Projects
home:Kaguya:branches:home:Kaguya
tensorflow-oerv
Sign Up
Log In
Username
Password
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
Expand all
Collapse all
Changes of Revision 13
View file
ecdsa.patch
Added
@@ -0,0 +1,801 @@ +diff --git a/ecdsa.go.org b/ecdsa.go +index 9f9a09a..8d057cb 100755 +--- external/go_sdk/src/crypto/ecdsa/ecdsa.go ++++ external/go_sdk/src/crypto/ecdsa/ecdsa.go +@@ -1,368 +1,427 @@ +-// Copyright 2011 The Go Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style +-// license that can be found in the LICENSE file. +- +-// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as +-// defined in FIPS 186-4 and SEC 1, Version 2.0. +-// +-// Signatures generated by this package are not deterministic, but entropy is +-// mixed with the private key and the message, achieving the same level of +-// security in case of randomness source failure. +-package ecdsa +- +-// FIPS 186-4 references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. +-// That standard is not freely available, which is a problem in an open source +-// implementation, because not only the implementer, but also any maintainer, +-// contributor, reviewer, auditor, and learner needs access to it. Instead, this +-// package references and follows the equivalent SEC 1, Version 2.0. +-// +-// FIPS 186-4: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf +-// SEC 1, Version 2.0: https://www.secg.org/sec1-v2.pdf +- +-import ( +- "crypto" +- "crypto/aes" +- "crypto/cipher" +- "crypto/elliptic" +- "crypto/internal/randutil" +- "crypto/sha512" +- "errors" +- "io" +- "math/big" +- +- "golang.org/x/crypto/cryptobyte" +- "golang.org/x/crypto/cryptobyte/asn1" +-) +- +-// A invertible implements fast inverse in GF(N). +-type invertible interface { +- // Inverse returns the inverse of k mod Params().N. +- Inverse(k *big.Int) *big.Int +-} +- +-// A combinedMult implements fast combined multiplication for verification. +-type combinedMult interface { +- // CombinedMult returns s1G + s2P where G is the generator. +- CombinedMult(Px, Py *big.Int, s1, s2 byte) (x, y *big.Int) +-} +- +-const ( +- aesIV = "IV for ECDSA CTR" +-) +- +-// PublicKey represents an ECDSA public key. +-type PublicKey struct { +- elliptic.Curve +- X, Y *big.Int +-} +- +-// Any methods implemented on PublicKey might need to also be implemented on +-// PrivateKey, as the latter embeds the former and will expose its methods. +- +-// Equal reports whether pub and x have the same value. +-// +-// Two keys are only considered to have the same value if they have the same Curve value. +-// Note that for example elliptic.P256() and elliptic.P256().Params() are different +-// values, as the latter is a generic not constant time implementation. +-func (pub *PublicKey) Equal(x crypto.PublicKey) bool { +- xx, ok := x.(*PublicKey) +- if !ok { +- return false +- } +- return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && +- // Standard library Curve implementations are singletons, so this check +- // will work for those. Other Curves might be equivalent even if not +- // singletons, but there is no definitive way to check for that, and +- // better to err on the side of safety. +- pub.Curve == xx.Curve +-} +- +-// PrivateKey represents an ECDSA private key. +-type PrivateKey struct { +- PublicKey +- D *big.Int +-} +- +-// Public returns the public key corresponding to priv. +-func (priv *PrivateKey) Public() crypto.PublicKey { +- return &priv.PublicKey +-} +- +-// Equal reports whether priv and x have the same value. +-// +-// See PublicKey.Equal for details on how Curve is compared. +-func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { +- xx, ok := x.(*PrivateKey) +- if !ok { +- return false +- } +- return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 +-} +- +-// Sign signs digest with priv, reading randomness from rand. The opts argument +-// is not currently used but, in keeping with the crypto.Signer interface, +-// should be the hash function used to digest the message. +-// +-// This method implements crypto.Signer, which is an interface to support keys +-// where the private part is kept in, for example, a hardware module. Common +-// uses can use the SignASN1 function in this package directly. +-func (priv *PrivateKey) Sign(rand io.Reader, digest byte, opts crypto.SignerOpts) (byte, error) { +- r, s, err := Sign(rand, priv, digest) +- if err != nil { +- return nil, err +- } +- +- var b cryptobyte.Builder +- b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { +- b.AddASN1BigInt(r) +- b.AddASN1BigInt(s) +- }) +- return b.Bytes() +-} +- +-var one = new(big.Int).SetInt64(1) +- +-// randFieldElement returns a random element of the order of the given +-// curve using the procedure given in FIPS 186-4, Appendix B.5.1. +-func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { +- params := c.Params() +- // Note that for P-521 this will actually be 63 bits more than the order, as +- // division rounds down, but the extra bit is inconsequential. +- b := make(byte, params.BitSize/8+8) // TODO: use params.N.BitLen() +- _, err = io.ReadFull(rand, b) +- if err != nil { +- return +- } +- +- k = new(big.Int).SetBytes(b) +- n := new(big.Int).Sub(params.N, one) +- k.Mod(k, n) +- k.Add(k, one) +- return +-} +- +-// GenerateKey generates a public and private key pair. +-func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { +- k, err := randFieldElement(c, rand) +- if err != nil { +- return nil, err +- } +- +- priv := new(PrivateKey) +- priv.PublicKey.Curve = c +- priv.D = k +- priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) +- return priv, nil +-} +- +-// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, +-// we use the left-most bits of the hash to match the bit-length of the order of +-// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. +-func hashToInt(hash byte, c elliptic.Curve) *big.Int { +- orderBits := c.Params().N.BitLen() +- orderBytes := (orderBits + 7) / 8 +- if len(hash) > orderBytes { +- hash = hash:orderBytes +- } +- +- ret := new(big.Int).SetBytes(hash) +- excess := len(hash)*8 - orderBits +- if excess > 0 { +- ret.Rsh(ret, uint(excess)) +- } +- return ret +-} +- +-// fermatInverse calculates the inverse of k in GF(P) using Fermat's method +-// (exponentiation modulo P - 2, per Euler's theorem). This has better +-// constant-time properties than Euclid's method (implemented in +-// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big +-// itself isn't strictly constant-time so it's not perfect. +-func fermatInverse(k, N *big.Int) *big.Int { +- two := big.NewInt(2) +- nMinus2 := new(big.Int).Sub(N, two) +- return new(big.Int).Exp(k, nMinus2, N) +-} +- +-var errZeroParam = errors.New("zero parameter") +- +-// Sign signs a hash (which should be the result of hashing a larger message) +-// using the private key, priv. If the hash is longer than the bit-length of the +-// private key's curve order, the hash will be truncated to that length. It +-// returns the signature as a pair of integers. Most applications should use +-// SignASN1 instead of dealing directly with r, s. +-func Sign(rand io.Reader, priv *PrivateKey, hash byte) (r, s *big.Int, err error) { +- randutil.MaybeReadByte(rand) +- +- // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: +- // +- // SHA2-512(priv.D || entropy || hash):32 +- // +- // The CSPRNG key is indifferentiable from a random oracle as shown in +- // Coron, the AES-CTR stream is indifferentiable from a random oracle +- // under standard cryptographic assumptions (see Larsson for examples). +- // +- // Coron: https://cs.nyu.edu/~dodis/ps/merkle.pdf +- // Larsson: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf +- +- // Get 256 bits of entropy from rand. +- entropy := make(byte, 32) +- _, err = io.ReadFull(rand, entropy) +- if err != nil { +- return +- } +- +- // Initialize an SHA-512 hash context; digest... +- md := sha512.New() +- md.Write(priv.D.Bytes()) // the private key, +- md.Write(entropy) // the entropy, +- md.Write(hash) // and the input hash; +- key := md.Sum(nil):32 // and compute ChopMD-256(SHA-512), +- // which is an indifferentiable MAC. +- +- // Create an AES-CTR instance to use as a CSPRNG. +- block, err := aes.NewCipher(key) +- if err != nil { +- return nil, nil, err +- } +- +- // Create a CSPRNG that xors a stream of zeros with +- // the output of the AES-CTR instance. +- csprng := cipher.StreamReader{ +- R: zeroReader, +- S: cipher.NewCTR(block, byte(aesIV)), +- } +- +- c := priv.PublicKey.Curve +- return sign(priv, &csprng, c, hash) +-} +- +-func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash byte) (r, s *big.Int, err error) { +- // SEC 1, Version 2.0, Section 4.1.3 +- N := c.Params().N +- if N.Sign() == 0 { +- return nil, nil, errZeroParam +- } +- var k, kInv *big.Int +- for { +- for { +- k, err = randFieldElement(c, *csprng) +- if err != nil { +- r = nil +- return +- } +- +- if in, ok := priv.Curve.(invertible); ok { +- kInv = in.Inverse(k) +- } else { +- kInv = fermatInverse(k, N) // N != 0 +- } +- +- r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) +- r.Mod(r, N) +- if r.Sign() != 0 { +- break +- } +- } +- +- e := hashToInt(hash, c) +- s = new(big.Int).Mul(priv.D, r) +- s.Add(s, e) +- s.Mul(s, kInv) +- s.Mod(s, N) // N != 0 +- if s.Sign() != 0 { +- break +- } +- } +- +- return +-} +- +-// SignASN1 signs a hash (which should be the result of hashing a larger message) +-// using the private key, priv. If the hash is longer than the bit-length of the +-// private key's curve order, the hash will be truncated to that length. It +-// returns the ASN.1 encoded signature. +-func SignASN1(rand io.Reader, priv *PrivateKey, hash byte) (byte, error) { +- return priv.Sign(rand, hash, nil) +-} +- +-// Verify verifies the signature in r, s of hash using the public key, pub. Its +-// return value records whether the signature is valid. Most applications should +-// use VerifyASN1 instead of dealing directly with r, s. +-func Verify(pub *PublicKey, hash byte, r, s *big.Int) bool { +- c := pub.Curve +- N := c.Params().N +- +- if r.Sign() <= 0 || s.Sign() <= 0 { +- return false +- } +- if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { +- return false +- } +- return verify(pub, c, hash, r, s) +-} +- +-func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash byte, r, s *big.Int) bool { +- // SEC 1, Version 2.0, Section 4.1.4 +- e := hashToInt(hash, c) +- var w *big.Int +- N := c.Params().N +- if in, ok := c.(invertible); ok { +- w = in.Inverse(s) +- } else { +- w = new(big.Int).ModInverse(s, N) +- } +- +- u1 := e.Mul(e, w) +- u1.Mod(u1, N) +- u2 := w.Mul(r, w) +- u2.Mod(u2, N) +- +- // Check if implements S1*g + S2*p +- var x, y *big.Int +- if opt, ok := c.(combinedMult); ok { +- x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) +- } else { +- x1, y1 := c.ScalarBaseMult(u1.Bytes()) +- x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) +- x, y = c.Add(x1, y1, x2, y2) +- } +- +- if x.Sign() == 0 && y.Sign() == 0 { +- return false +- } +- x.Mod(x, N) +- return x.Cmp(r) == 0 +-} +- +-// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the +-// public key, pub. Its return value records whether the signature is valid. +-func VerifyASN1(pub *PublicKey, hash, sig byte) bool { +- var ( +- r, s = &big.Int{}, &big.Int{} +- inner cryptobyte.String +- ) +- input := cryptobyte.String(sig) +- if !input.ReadASN1(&inner, asn1.SEQUENCE) || +- !input.Empty() || +- !inner.ReadASN1Integer(r) || +- !inner.ReadASN1Integer(s) || +- !inner.Empty() { +- return false +- } +- return Verify(pub, hash, r, s) +-} +- +-type zr struct { +- io.Reader +-} +- +-// Read replaces the contents of dst with zeros. +-func (z *zr) Read(dst byte) (n int, err error) { +- for i := range dst { +- dsti = 0 +- } +- return len(dst), nil +-} +- +-var zeroReader = &zr{} ++// Copyright 2011 The Go Authors. All rights reserved. ++// Use of this source code is governed by a BSD-style ++// license that can be found in the LICENSE file. ++ ++// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as ++// defined in FIPS 186-4 and SEC 1, Version 2.0. ++// ++// Signatures generated by this package are not deterministic, but entropy is ++// mixed with the private key and the message, achieving the same level of ++// security in case of randomness source failure. ++package ecdsa ++ ++// FIPS 186-4 references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. ++// That standard is not freely available, which is a problem in an open source ++// implementation, because not only the implementer, but also any maintainer, ++// contributor, reviewer, auditor, and learner needs access to it. Instead, this ++// package references and follows the equivalent SEC 1, Version 2.0. ++// ++// FIPS 186-4: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf ++// SEC 1, Version 2.0: https://www.secg.org/sec1-v2.pdf ++ ++import ( ++ "crypto" ++ "crypto/aes" ++ "crypto/cipher" ++ "crypto/elliptic" ++ "crypto/internal/boring" ++ "crypto/internal/boring/bbig" ++ "crypto/internal/randutil" ++ "crypto/sha512" ++ "errors" ++ "io" ++ "math/big" ++ ++ "golang.org/x/crypto/cryptobyte" ++ "golang.org/x/crypto/cryptobyte/asn1" ++) ++ ++// A invertible implements fast inverse in GF(N). ++type invertible interface { ++ // Inverse returns the inverse of k mod Params().N. ++ Inverse(k *big.Int) *big.Int ++} ++ ++// A combinedMult implements fast combined multiplication for verification. ++type combinedMult interface { ++ // CombinedMult returns s1G + s2P where G is the generator. ++ CombinedMult(Px, Py *big.Int, s1, s2 byte) (x, y *big.Int) ++} ++ ++const ( ++ aesIV = "IV for ECDSA CTR" ++) ++ ++// PublicKey represents an ECDSA public key. ++type PublicKey struct { ++ elliptic.Curve ++ X, Y *big.Int ++} ++ ++// Any methods implemented on PublicKey might need to also be implemented on ++// PrivateKey, as the latter embeds the former and will expose its methods. ++ ++// Equal reports whether pub and x have the same value. ++// ++// Two keys are only considered to have the same value if they have the same Curve value. ++// Note that for example elliptic.P256() and elliptic.P256().Params() are different ++// values, as the latter is a generic not constant time implementation. ++func (pub *PublicKey) Equal(x crypto.PublicKey) bool { ++ xx, ok := x.(*PublicKey) ++ if !ok { ++ return false ++ } ++ return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && ++ // Standard library Curve implementations are singletons, so this check ++ // will work for those. Other Curves might be equivalent even if not ++ // singletons, but there is no definitive way to check for that, and ++ // better to err on the side of safety. ++ pub.Curve == xx.Curve ++} ++ ++// PrivateKey represents an ECDSA private key. ++type PrivateKey struct { ++ PublicKey ++ D *big.Int ++} ++ ++// Public returns the public key corresponding to priv. ++func (priv *PrivateKey) Public() crypto.PublicKey { ++ return &priv.PublicKey ++} ++ ++// Equal reports whether priv and x have the same value. ++// ++// See PublicKey.Equal for details on how Curve is compared. ++func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { ++ xx, ok := x.(*PrivateKey) ++ if !ok { ++ return false ++ } ++ return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 ++} ++ ++// Sign signs digest with priv, reading randomness from rand. The opts argument ++// is not currently used but, in keeping with the crypto.Signer interface, ++// should be the hash function used to digest the message. ++// ++// This method implements crypto.Signer, which is an interface to support keys ++// where the private part is kept in, for example, a hardware module. Common ++// uses can use the SignASN1 function in this package directly. ++func (priv *PrivateKey) Sign(rand io.Reader, digest byte, opts crypto.SignerOpts) (byte, error) { ++ if boring.Enabled && rand == boring.RandReader { ++ b, err := boringPrivateKey(priv) ++ if err != nil { ++ return nil, err ++ } ++ return boring.SignMarshalECDSA(b, digest) ++ } ++ boring.UnreachableExceptTests() ++ ++ r, s, err := Sign(rand, priv, digest) ++ if err != nil { ++ return nil, err ++ } ++ ++ var b cryptobyte.Builder ++ b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { ++ b.AddASN1BigInt(r) ++ b.AddASN1BigInt(s) ++ }) ++ return b.Bytes() ++} ++ ++var one = new(big.Int).SetInt64(1) ++ ++// randFieldElement returns a random element of the order of the given ++// curve using the procedure given in FIPS 186-4, Appendix B.5.1. ++func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { ++ params := c.Params() ++ // Note that for P-521 this will actually be 63 bits more than the order, as ++ // division rounds down, but the extra bit is inconsequential. ++ b := make(byte, params.N.BitLen()/8+8) ++ _, err = io.ReadFull(rand, b) ++ if err != nil { ++ return ++ } ++ ++ k = new(big.Int).SetBytes(b) ++ n := new(big.Int).Sub(params.N, one) ++ k.Mod(k, n) ++ k.Add(k, one) ++ return ++} ++ ++// GenerateKey generates a public and private key pair. ++func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { ++ if boring.Enabled && rand == boring.RandReader { ++ x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) ++ if err != nil { ++ return nil, err ++ } ++ return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil ++ } ++ boring.UnreachableExceptTests() ++ ++ k, err := randFieldElement(c, rand) ++ if err != nil { ++ return nil, err ++ } ++ ++ priv := new(PrivateKey) ++ priv.PublicKey.Curve = c ++ priv.D = k ++ priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) ++ return priv, nil ++} ++ ++// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, ++// we use the left-most bits of the hash to match the bit-length of the order of ++// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. ++func hashToInt(hash byte, c elliptic.Curve) *big.Int { ++ orderBits := c.Params().N.BitLen() ++ orderBytes := (orderBits + 7) / 8 ++ if len(hash) > orderBytes { ++ hash = hash:orderBytes ++ } ++ ++ ret := new(big.Int).SetBytes(hash) ++ excess := len(hash)*8 - orderBits ++ if excess > 0 { ++ ret.Rsh(ret, uint(excess)) ++ } ++ return ret ++} ++ ++// fermatInverse calculates the inverse of k in GF(P) using Fermat's method ++// (exponentiation modulo P - 2, per Euler's theorem). This has better ++// constant-time properties than Euclid's method (implemented in ++// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big ++// itself isn't strictly constant-time so it's not perfect. ++func fermatInverse(k, N *big.Int) *big.Int { ++ two := big.NewInt(2) ++ nMinus2 := new(big.Int).Sub(N, two) ++ return new(big.Int).Exp(k, nMinus2, N) ++} ++ ++var errZeroParam = errors.New("zero parameter") ++ ++// Sign signs a hash (which should be the result of hashing a larger message) ++// using the private key, priv. If the hash is longer than the bit-length of the ++// private key's curve order, the hash will be truncated to that length. It ++// returns the signature as a pair of integers. Most applications should use ++// SignASN1 instead of dealing directly with r, s. ++func Sign(rand io.Reader, priv *PrivateKey, hash byte) (r, s *big.Int, err error) { ++ randutil.MaybeReadByte(rand) ++ ++ if boring.Enabled && rand == boring.RandReader { ++ b, err := boringPrivateKey(priv) ++ if err != nil { ++ return nil, nil, err ++ } ++ sig, err := boring.SignMarshalECDSA(b, hash) ++ if err != nil { ++ return nil, nil, err ++ } ++ var r, s big.Int ++ var inner cryptobyte.String ++ input := cryptobyte.String(sig) ++ if !input.ReadASN1(&inner, asn1.SEQUENCE) || ++ !input.Empty() || ++ !inner.ReadASN1Integer(&r) || ++ !inner.ReadASN1Integer(&s) || ++ !inner.Empty() { ++ return nil, nil, errors.New("invalid ASN.1 from boringcrypto") ++ } ++ return &r, &s, nil ++ } ++ boring.UnreachableExceptTests() ++ ++ // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: ++ // ++ // SHA2-512(priv.D || entropy || hash):32 ++ // ++ // The CSPRNG key is indifferentiable from a random oracle as shown in ++ // Coron, the AES-CTR stream is indifferentiable from a random oracle ++ // under standard cryptographic assumptions (see Larsson for examples). ++ // ++ // Coron: https://cs.nyu.edu/~dodis/ps/merkle.pdf ++ // Larsson: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf ++ ++ // Get 256 bits of entropy from rand. ++ entropy := make(byte, 32) ++ _, err = io.ReadFull(rand, entropy) ++ if err != nil { ++ return ++ } ++ ++ // Initialize an SHA-512 hash context; digest... ++ md := sha512.New() ++ md.Write(priv.D.Bytes()) // the private key, ++ md.Write(entropy) // the entropy, ++ md.Write(hash) // and the input hash; ++ key := md.Sum(nil):32 // and compute ChopMD-256(SHA-512), ++ // which is an indifferentiable MAC. ++ ++ // Create an AES-CTR instance to use as a CSPRNG. ++ block, err := aes.NewCipher(key) ++ if err != nil { ++ return nil, nil, err ++ } ++ ++ // Create a CSPRNG that xors a stream of zeros with ++ // the output of the AES-CTR instance. ++ csprng := &cipher.StreamReader{ ++ R: zeroReader, ++ S: cipher.NewCTR(block, byte(aesIV)), ++ } ++ ++ c := priv.PublicKey.Curve ++ return sign(priv, csprng, c, hash) ++} ++ ++func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash byte) (r, s *big.Int, err error) { ++ // SEC 1, Version 2.0, Section 4.1.3 ++ N := c.Params().N ++ if N.Sign() == 0 { ++ return nil, nil, errZeroParam ++ } ++ var k, kInv *big.Int ++ for { ++ for { ++ k, err = randFieldElement(c, *csprng) ++ if err != nil { ++ r = nil ++ return ++ } ++ ++ if in, ok := priv.Curve.(invertible); ok { ++ kInv = in.Inverse(k) ++ } else { ++ kInv = fermatInverse(k, N) // N != 0 ++ } ++ ++ r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) ++ r.Mod(r, N) ++ if r.Sign() != 0 { ++ break ++ } ++ } ++ ++ e := hashToInt(hash, c) ++ s = new(big.Int).Mul(priv.D, r) ++ s.Add(s, e) ++ s.Mul(s, kInv) ++ s.Mod(s, N) // N != 0 ++ if s.Sign() != 0 { ++ break ++ } ++ } ++ ++ return ++} ++ ++// SignASN1 signs a hash (which should be the result of hashing a larger message) ++// using the private key, priv. If the hash is longer than the bit-length of the ++// private key's curve order, the hash will be truncated to that length. It ++// returns the ASN.1 encoded signature. ++func SignASN1(rand io.Reader, priv *PrivateKey, hash byte) (byte, error) { ++ return priv.Sign(rand, hash, nil) ++} ++ ++// Verify verifies the signature in r, s of hash using the public key, pub. Its ++// return value records whether the signature is valid. Most applications should ++// use VerifyASN1 instead of dealing directly with r, s. ++func Verify(pub *PublicKey, hash byte, r, s *big.Int) bool { ++ if boring.Enabled { ++ key, err := boringPublicKey(pub) ++ if err != nil { ++ return false ++ } ++ var b cryptobyte.Builder ++ b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { ++ b.AddASN1BigInt(r) ++ b.AddASN1BigInt(s) ++ }) ++ sig, err := b.Bytes() ++ if err != nil { ++ return false ++ } ++ return boring.VerifyECDSA(key, hash, sig) ++ } ++ boring.UnreachableExceptTests() ++ ++ c := pub.Curve ++ N := c.Params().N ++ ++ if r.Sign() <= 0 || s.Sign() <= 0 { ++ return false ++ } ++ if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { ++ return false ++ } ++ return verify(pub, c, hash, r, s) ++} ++ ++func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash byte, r, s *big.Int) bool { ++ // SEC 1, Version 2.0, Section 4.1.4 ++ e := hashToInt(hash, c) ++ var w *big.Int ++ N := c.Params().N ++ if in, ok := c.(invertible); ok { ++ w = in.Inverse(s) ++ } else { ++ w = new(big.Int).ModInverse(s, N) ++ } ++ ++ u1 := e.Mul(e, w) ++ u1.Mod(u1, N) ++ u2 := w.Mul(r, w) ++ u2.Mod(u2, N) ++ ++ // Check if implements S1*g + S2*p ++ var x, y *big.Int ++ if opt, ok := c.(combinedMult); ok { ++ x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) ++ } else { ++ x1, y1 := c.ScalarBaseMult(u1.Bytes()) ++ x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) ++ x, y = c.Add(x1, y1, x2, y2) ++ } ++ ++ if x.Sign() == 0 && y.Sign() == 0 { ++ return false ++ } ++ x.Mod(x, N) ++ return x.Cmp(r) == 0 ++} ++ ++// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the ++// public key, pub. Its return value records whether the signature is valid. ++func VerifyASN1(pub *PublicKey, hash, sig byte) bool { ++ var ( ++ r, s = &big.Int{}, &big.Int{} ++ inner cryptobyte.String ++ ) ++ input := cryptobyte.String(sig) ++ if !input.ReadASN1(&inner, asn1.SEQUENCE) || ++ !input.Empty() || ++ !inner.ReadASN1Integer(r) || ++ !inner.ReadASN1Integer(s) || ++ !inner.Empty() { ++ return false ++ } ++ return Verify(pub, hash, r, s) ++} ++ ++type zr struct{} ++ ++// Read replaces the contents of dst with zeros. It is safe for concurrent use. ++func (zr) Read(dst byte) (n int, err error) { ++ for i := range dst { ++ dsti = 0 ++ } ++ return len(dst), nil ++} ++ ++var zeroReader = zr{} +\ No newline at end of file
Locations
Projects
Search
Status Monitor
Help
Open Build Service
OBS Manuals
API Documentation
OBS Portal
Reporting a Bug
Contact
Mailing List
Forums
Chat (IRC)
Twitter
Open Build Service (OBS)
is an
openSUSE project
.
浙ICP备2022010568号-2