Projects
home:Eustace:branches:Eulaceura:Factory
R-rlang
_service:obs_scm:0001-Unbundle-libxxhash.patch
Sign Up
Log In
Username
Password
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File _service:obs_scm:0001-Unbundle-libxxhash.patch of Package R-rlang
From 1890689ab03ed9cfdc193501c0fc48cb0bab339b Mon Sep 17 00:00:00 2001 From: Elliott Sales de Andrade <quantum.analyst@gmail.com> Date: Wed, 30 Dec 2020 20:07:56 -0500 Subject: [PATCH 1/2] Unbundle libxxhash. Signed-off-by: Elliott Sales de Andrade <quantum.analyst@gmail.com> --- src/Makevars | 2 +- src/internal/hash.c | 2 +- src/internal/xxhash/xxhash.h | 4766 ---------------------------------- 3 files changed, 2 insertions(+), 4768 deletions(-) delete mode 100644 src/internal/xxhash/xxhash.h diff --git a/src/Makevars b/src/Makevars index 4484e88f..4a4d549e 100644 --- a/src/Makevars +++ b/src/Makevars @@ -1,4 +1,4 @@ -PKG_CPPFLAGS = -I./lib/ +PKG_CPPFLAGS = -I./lib/ $(pkgconf --cflags libxxhash) PKG_CFLAGS = $(C_VISIBILITY) lib-files = \ diff --git a/src/internal/hash.c b/src/internal/hash.c index de6c12af..028c3e30 100644 --- a/src/internal/hash.c +++ b/src/internal/hash.c @@ -7,7 +7,7 @@ #define XXH_STATIC_LINKING_ONLY #define XXH_IMPLEMENTATION -#include "xxhash/xxhash.h" +#include "xxhash.h" #include <stdio.h> // sprintf() #include <inttypes.h> // PRIx64 diff --git a/src/internal/xxhash/xxhash.h b/src/internal/xxhash/xxhash.h deleted file mode 100644 index 2d56d23c..00000000 --- a/src/internal/xxhash/xxhash.h +++ /dev/null @@ -1,4766 +0,0 @@ -/* - * xxHash - Extremely Fast Hash algorithm - * Header File - * Copyright (C) 2012-2020 Yann Collet - * - * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are - * met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following disclaimer - * in the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * You can contact the author at: - * - xxHash homepage: https://www.xxhash.com - * - xxHash source repository: https://github.com/Cyan4973/xxHash - */ - -/* TODO: update */ -/* Notice extracted from xxHash homepage: - -xxHash is an extremely fast hash algorithm, running at RAM speed limits. -It also successfully passes all tests from the SMHasher suite. - -Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) - -Name Speed Q.Score Author -xxHash 5.4 GB/s 10 -CrapWow 3.2 GB/s 2 Andrew -MumurHash 3a 2.7 GB/s 10 Austin Appleby -SpookyHash 2.0 GB/s 10 Bob Jenkins -SBox 1.4 GB/s 9 Bret Mulvey -Lookup3 1.2 GB/s 9 Bob Jenkins -SuperFastHash 1.2 GB/s 1 Paul Hsieh -CityHash64 1.05 GB/s 10 Pike & Alakuijala -FNV 0.55 GB/s 5 Fowler, Noll, Vo -CRC32 0.43 GB/s 9 -MD5-32 0.33 GB/s 10 Ronald L. Rivest -SHA1-32 0.28 GB/s 10 - -Q.Score is a measure of quality of the hash function. -It depends on successfully passing SMHasher test set. -10 is a perfect score. - -Note: SMHasher's CRC32 implementation is not the fastest one. -Other speed-oriented implementations can be faster, -especially in combination with PCLMUL instruction: -https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 - -A 64-bit version, named XXH64, is available since r35. -It offers much better speed, but for 64-bit applications only. -Name Speed on 64 bits Speed on 32 bits -XXH64 13.8 GB/s 1.9 GB/s -XXH32 6.8 GB/s 6.0 GB/s -*/ - -#if defined (__cplusplus) -extern "C" { -#endif - -/* **************************** - * INLINE mode - ******************************/ -/*! - * XXH_INLINE_ALL (and XXH_PRIVATE_API) - * Use these build macros to inline xxhash into the target unit. - * Inlining improves performance on small inputs, especially when the length is - * expressed as a compile-time constant: - * - * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html - * - * It also keeps xxHash symbols private to the unit, so they are not exported. - * - * Usage: - * #define XXH_INLINE_ALL - * #include "xxhash.h" - * - * Do not compile and link xxhash.o as a separate object, as it is not useful. - */ -#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ - && !defined(XXH_INLINE_ALL_31684351384) - /* this section should be traversed only once */ -# define XXH_INLINE_ALL_31684351384 - /* give access to the advanced API, required to compile implementations */ -# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ -# define XXH_STATIC_LINKING_ONLY - /* make all functions private */ -# undef XXH_PUBLIC_API -# if defined(__GNUC__) -# define XXH_PUBLIC_API static __inline __attribute__((unused)) -# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) -# define XXH_PUBLIC_API static inline -# elif defined(_MSC_VER) -# define XXH_PUBLIC_API static __inline -# else - /* note: this version may generate warnings for unused static functions */ -# define XXH_PUBLIC_API static -# endif - - /* - * This part deals with the special case where a unit wants to inline xxHash, - * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such - * as part of some previously included *.h header file. - * Without further action, the new include would just be ignored, - * and functions would effectively _not_ be inlined (silent failure). - * The following macros solve this situation by prefixing all inlined names, - * avoiding naming collision with previous inclusions. - */ -# ifdef XXH_NAMESPACE -# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" - /* - * Note: Alternative: #undef all symbols (it's a pretty large list). - * Without #error: it compiles, but functions are actually not inlined. - */ -# endif -# define XXH_NAMESPACE XXH_INLINE_ - /* - * Some identifiers (enums, type names) are not symbols, but they must - * still be renamed to avoid redeclaration. - * Alternative solution: do not redeclare them. - * However, this requires some #ifdefs, and is a more dispersed action. - * Meanwhile, renaming can be achieved in a single block - */ -# define XXH_IPREF(Id) XXH_INLINE_ ## Id -# define XXH_OK XXH_IPREF(XXH_OK) -# define XXH_ERROR XXH_IPREF(XXH_ERROR) -# define XXH_errorcode XXH_IPREF(XXH_errorcode) -# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) -# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) -# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) -# define XXH32_state_s XXH_IPREF(XXH32_state_s) -# define XXH32_state_t XXH_IPREF(XXH32_state_t) -# define XXH64_state_s XXH_IPREF(XXH64_state_s) -# define XXH64_state_t XXH_IPREF(XXH64_state_t) -# define XXH3_state_s XXH_IPREF(XXH3_state_s) -# define XXH3_state_t XXH_IPREF(XXH3_state_t) -# define XXH128_hash_t XXH_IPREF(XXH128_hash_t) - /* Ensure the header is parsed again, even if it was previously included */ -# undef XXHASH_H_5627135585666179 -# undef XXHASH_H_STATIC_13879238742 -#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ - - - -/* **************************************************************** - * Stable API - *****************************************************************/ -#ifndef XXHASH_H_5627135585666179 -#define XXHASH_H_5627135585666179 1 - -/* specific declaration modes for Windows */ -#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) -# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) -# ifdef XXH_EXPORT -# define XXH_PUBLIC_API __declspec(dllexport) -# elif XXH_IMPORT -# define XXH_PUBLIC_API __declspec(dllimport) -# endif -# else -# define XXH_PUBLIC_API /* do nothing */ -# endif -#endif - -/*! - * XXH_NAMESPACE, aka Namespace Emulation: - * - * If you want to include _and expose_ xxHash functions from within your own - * library, but also want to avoid symbol collisions with other libraries which - * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix - * any public symbol from xxhash library with the value of XXH_NAMESPACE - * (therefore, avoid empty or numeric values). - * - * Note that no change is required within the calling program as long as it - * includes `xxhash.h`: Regular symbol names will be automatically translated - * by this header. - */ -#ifdef XXH_NAMESPACE -# define XXH_CAT(A,B) A##B -# define XXH_NAME2(A,B) XXH_CAT(A,B) -# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) -/* XXH32 */ -# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) -# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) -# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) -# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) -# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) -# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) -# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) -# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) -# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) -/* XXH64 */ -# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) -# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) -# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) -# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) -# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) -# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) -# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) -# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) -# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) -/* XXH3_64bits */ -# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) -# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) -# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) -# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) -# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) -# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) -# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) -# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) -# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) -# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) -# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) -# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) -/* XXH3_128bits */ -# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) -# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) -# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) -# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) -# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) -# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) -# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) -# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) -# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) -# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) -# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) -# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) -# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) -#endif - - -/* ************************************* -* Version -***************************************/ -#define XXH_VERSION_MAJOR 0 -#define XXH_VERSION_MINOR 8 -#define XXH_VERSION_RELEASE 0 -#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) -XXH_PUBLIC_API unsigned XXH_versionNumber (void); - - -/* **************************** -* Definitions -******************************/ -#include <stddef.h> /* size_t */ -typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; - - -/*-********************************************************************** -* 32-bit hash -************************************************************************/ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint32_t XXH32_hash_t; -#else -# include <limits.h> -# if UINT_MAX == 0xFFFFFFFFUL - typedef unsigned int XXH32_hash_t; -# else -# if ULONG_MAX == 0xFFFFFFFFUL - typedef unsigned long XXH32_hash_t; -# else -# error "unsupported platform: need a 32-bit type" -# endif -# endif -#endif - -/*! - * XXH32(): - * Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input". - * The memory between input & input+length must be valid (allocated and read-accessible). - * "seed" can be used to alter the result predictably. - * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s - * - * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, - * and offers true 64/128 bit hash results. It provides a superior level of - * dispersion, and greatly reduces the risks of collisions. - */ -XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); - -/******* Streaming *******/ - -/* - * Streaming functions generate the xxHash value from an incrememtal input. - * This method is slower than single-call functions, due to state management. - * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. - * - * An XXH state must first be allocated using `XXH*_createState()`. - * - * Start a new hash by initializing the state with a seed using `XXH*_reset()`. - * - * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. - * - * The function returns an error code, with 0 meaning OK, and any other value - * meaning there is an error. - * - * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. - * This function returns the nn-bits hash as an int or long long. - * - * It's still possible to continue inserting input into the hash state after a - * digest, and generate new hash values later on by invoking `XXH*_digest()`. - * - * When done, release the state using `XXH*_freeState()`. - */ - -typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ -XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); -XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); -XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); - -XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); -XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); - -/******* Canonical representation *******/ - -/* - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * This the simplest and fastest format for further post-processing. - * - * However, this leaves open the question of what is the order on the byte level, - * since little and big endian conventions will store the same number differently. - * - * The canonical representation settles this issue by mandating big-endian - * convention, the same convention as human-readable numbers (large digits first). - * - * When writing hash values to storage, sending them over a network, or printing - * them, it's highly recommended to use the canonical representation to ensure - * portability across a wider range of systems, present and future. - * - * The following functions allow transformation of hash values to and from - * canonical format. - */ - -typedef struct { unsigned char digest[4]; } XXH32_canonical_t; -XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); -XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); - - -#ifndef XXH_NO_LONG_LONG -/*-********************************************************************** -* 64-bit hash -************************************************************************/ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint64_t XXH64_hash_t; -#else - /* the following type must have a width of 64-bit */ - typedef unsigned long long XXH64_hash_t; -#endif - -/*! - * XXH64(): - * Returns the 64-bit hash of sequence of length @length stored at memory - * address @input. - * @seed can be used to alter the result predictably. - * - * This function usually runs faster on 64-bit systems, but slower on 32-bit - * systems (see benchmark). - * - * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, - * and offers true 64/128 bit hash results. It provides a superior level of - * dispersion, and greatly reduces the risks of collisions. - */ -XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed); - -/******* Streaming *******/ -typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ -XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); -XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); -XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); - -XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); -XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); - -/******* Canonical representation *******/ -typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); -XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); - - -/*-********************************************************************** -* XXH3 64-bit variant -************************************************************************/ - -/* ************************************************************************ - * XXH3 is a new hash algorithm featuring: - * - Improved speed for both small and large inputs - * - True 64-bit and 128-bit outputs - * - SIMD acceleration - * - Improved 32-bit viability - * - * Speed analysis methodology is explained here: - * - * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html - * - * In general, expect XXH3 to run about ~2x faster on large inputs and >3x - * faster on small ones compared to XXH64, though exact differences depend on - * the platform. - * - * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash - * on all platforms. - * - * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it. - * - * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run - * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are - * explained in the implementation. - * - * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, - * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro. - * - * XXH3 offers 2 variants, _64bits and _128bits. - * When only 64 bits are needed, prefer calling the _64bits variant, as it - * reduces the amount of mixing, resulting in faster speed on small inputs. - * - * It's also generally simpler to manipulate a scalar return type than a struct. - * - * The 128-bit version adds additional strength, but it is slightly slower. - * - * The XXH3 algorithm is still in development. - * The results it produces may still change in future versions. - * - * Results produced by v0.7.x are not comparable with results from v0.7.y. - * However, the API is completely stable, and it can safely be used for - * ephemeral data (local sessions). - * - * Avoid storing values in long-term storage until the algorithm is finalized. - * XXH3's return values will be officially finalized upon reaching v0.8.0. - * - * After which, return values of XXH3 and XXH128 will no longer change in - * future versions. - * - * The API supports one-shot hashing, streaming mode, and custom secrets. - */ - -/* XXH3_64bits(): - * default 64-bit variant, using default secret and default seed of 0. - * It's the fastest variant. */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); - -/* - * XXH3_64bits_withSeed(): - * This variant generates a custom secret on the fly - * based on default secret altered using the `seed` value. - * While this operation is decently fast, note that it's not completely free. - * Note: seed==0 produces the same results as XXH3_64bits(). - */ -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); - -/* - * XXH3_64bits_withSecret(): - * It's possible to provide any blob of bytes as a "secret" to generate the hash. - * This makes it more difficult for an external actor to prepare an intentional collision. - * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). - * However, the quality of produced hash values depends on secret's entropy. - * Technically, the secret must look like a bunch of random bytes. - * Avoid "trivial" or structured data such as repeated sequences or a text document. - * Whenever unsure about the "randomness" of the blob of bytes, - * consider relabelling it as a "custom seed" instead, - * and employ "XXH3_generateSecret()" (see below) - * to generate a high entropy secret derived from the custom seed. - */ -#define XXH3_SECRET_SIZE_MIN 136 -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); - - -/******* Streaming *******/ -/* - * Streaming requires state maintenance. - * This operation costs memory and CPU. - * As a consequence, streaming is slower than one-shot hashing. - * For better performance, prefer one-shot functions whenever applicable. - */ -typedef struct XXH3_state_s XXH3_state_t; -XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); -XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); -XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); - -/* - * XXH3_64bits_reset(): - * Initialize with default parameters. - * digest will be equivalent to `XXH3_64bits()`. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); -/* - * XXH3_64bits_reset_withSeed(): - * Generate a custom secret from `seed`, and store it into `statePtr`. - * digest will be equivalent to `XXH3_64bits_withSeed()`. - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); -/* - * XXH3_64bits_reset_withSecret(): - * `secret` is referenced, it _must outlive_ the hash streaming session. - * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, - * and the quality of produced hash values depends on secret's entropy - * (secret's content should look like a bunch of random bytes). - * When in doubt about the randomness of a candidate `secret`, - * consider employing `XXH3_generateSecret()` instead (see below). - */ -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); - -XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); - -/* note : canonical representation of XXH3 is the same as XXH64 - * since they both produce XXH64_hash_t values */ - - -/*-********************************************************************** -* XXH3 128-bit variant -************************************************************************/ - -typedef struct { - XXH64_hash_t low64; - XXH64_hash_t high64; -} XXH128_hash_t; - -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); - -/******* Streaming *******/ -/* - * Streaming requires state maintenance. - * This operation costs memory and CPU. - * As a consequence, streaming is slower than one-shot hashing. - * For better performance, prefer one-shot functions whenever applicable. - * - * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). - * Use already declared XXH3_createState() and XXH3_freeState(). - * - * All reset and streaming functions have same meaning as their 64-bit counterpart. - */ - -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); - -XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); - -/* Following helper functions make it possible to compare XXH128_hast_t values. - * Since XXH128_hash_t is a structure, this capability is not offered by the language. - * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ - -/*! - * XXH128_isEqual(): - * Return: 1 if `h1` and `h2` are equal, 0 if they are not. - */ -XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); - -/*! - * XXH128_cmp(): - * - * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. - * - * return: >0 if *h128_1 > *h128_2 - * =0 if *h128_1 == *h128_2 - * <0 if *h128_1 < *h128_2 - */ -XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); - - -/******* Canonical representation *******/ -typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; -XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); -XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); - - -#endif /* XXH_NO_LONG_LONG */ - -#endif /* XXHASH_H_5627135585666179 */ - - - -#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) -#define XXHASH_H_STATIC_13879238742 -/* **************************************************************************** - * This section contains declarations which are not guaranteed to remain stable. - * They may change in future versions, becoming incompatible with a different - * version of the library. - * These declarations should only be used with static linking. - * Never use them in association with dynamic linking! - ***************************************************************************** */ - -/* - * These definitions are only present to allow static allocation - * of XXH states, on stack or in a struct, for example. - * Never **ever** access their members directly. - */ - -struct XXH32_state_s { - XXH32_hash_t total_len_32; - XXH32_hash_t large_len; - XXH32_hash_t v1; - XXH32_hash_t v2; - XXH32_hash_t v3; - XXH32_hash_t v4; - XXH32_hash_t mem32[4]; - XXH32_hash_t memsize; - XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */ -}; /* typedef'd to XXH32_state_t */ - - -#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ - -struct XXH64_state_s { - XXH64_hash_t total_len; - XXH64_hash_t v1; - XXH64_hash_t v2; - XXH64_hash_t v3; - XXH64_hash_t v4; - XXH64_hash_t mem64[4]; - XXH32_hash_t memsize; - XXH32_hash_t reserved32; /* required for padding anyway */ - XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */ -}; /* typedef'd to XXH64_state_t */ - -#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */ -# include <stdalign.h> -# define XXH_ALIGN(n) alignas(n) -#elif defined(__GNUC__) -# define XXH_ALIGN(n) __attribute__ ((aligned(n))) -#elif defined(_MSC_VER) -# define XXH_ALIGN(n) __declspec(align(n)) -#else -# define XXH_ALIGN(n) /* disabled */ -#endif - -/* Old GCC versions only accept the attribute after the type in structures. */ -#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ - && defined(__GNUC__) -# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) -#else -# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type -#endif - -#define XXH3_INTERNALBUFFER_SIZE 256 -#define XXH3_SECRET_DEFAULT_SIZE 192 -struct XXH3_state_s { - XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); - /* used to store a custom secret generated from a seed */ - XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); - XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); - XXH32_hash_t bufferedSize; - XXH32_hash_t reserved32; - size_t nbStripesSoFar; - XXH64_hash_t totalLen; - size_t nbStripesPerBlock; - size_t secretLimit; - XXH64_hash_t seed; - XXH64_hash_t reserved64; - const unsigned char* extSecret; /* reference to external secret; - * if == NULL, use .customSecret instead */ - /* note: there may be some padding at the end due to alignment on 64 bytes */ -}; /* typedef'd to XXH3_state_t */ - -#undef XXH_ALIGN_MEMBER - -/* When the XXH3_state_t structure is merely emplaced on stack, - * it should be initialized with XXH3_INITSTATE() or a memset() - * in case its first reset uses XXH3_NNbits_reset_withSeed(). - * This init can be omitted if the first reset uses default or _withSecret mode. - * This operation isn't necessary when the state is created with XXH3_createState(). - * Note that this doesn't prepare the state for a streaming operation, - * it's still necessary to use XXH3_NNbits_reset*() afterwards. - */ -#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } - - -/* === Experimental API === */ -/* Symbols defined below must be considered tied to a specific library version. */ - -/* - * XXH3_generateSecret(): - * - * Derive a high-entropy secret from any user-defined content, named customSeed. - * The generated secret can be used in combination with `*_withSecret()` functions. - * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, - * as it becomes much more difficult for an external actor to guess how to impact the calculation logic. - * - * The function accepts as input a custom seed of any length and any content, - * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE - * into an already allocated buffer secretBuffer. - * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long. - * - * The generated secret can then be used with any `*_withSecret()` variant. - * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, - * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` - * are part of this list. They all accept a `secret` parameter - * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) - * _and_ feature very high entropy (consist of random-looking bytes). - * These conditions can be a high bar to meet, so - * this function can be used to generate a secret of proper quality. - * - * customSeed can be anything. It can have any size, even small ones, - * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes. - * The resulting `secret` will nonetheless provide all expected qualities. - * - * Supplying NULL as the customSeed copies the default secret into `secretBuffer`. - * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. - */ -XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize); - - -/* simple short-cut to pre-selected XXH3_128bits variant */ -XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); - - -#endif /* XXH_NO_LONG_LONG */ - - -#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) -# define XXH_IMPLEMENTATION -#endif - -#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ - - -/* ======================================================================== */ -/* ======================================================================== */ -/* ======================================================================== */ - - -/*-********************************************************************** - * xxHash implementation - *-********************************************************************** - * xxHash's implementation used to be hosted inside xxhash.c. - * - * However, inlining requires implementation to be visible to the compiler, - * hence be included alongside the header. - * Previously, implementation was hosted inside xxhash.c, - * which was then #included when inlining was activated. - * This construction created issues with a few build and install systems, - * as it required xxhash.c to be stored in /include directory. - * - * xxHash implementation is now directly integrated within xxhash.h. - * As a consequence, xxhash.c is no longer needed in /include. - * - * xxhash.c is still available and is still useful. - * In a "normal" setup, when xxhash is not inlined, - * xxhash.h only exposes the prototypes and public symbols, - * while xxhash.c can be built into an object file xxhash.o - * which can then be linked into the final binary. - ************************************************************************/ - -#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ - || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) -# define XXH_IMPLEM_13a8737387 - -/* ************************************* -* Tuning parameters -***************************************/ -/*! - * XXH_FORCE_MEMORY_ACCESS: - * By default, access to unaligned memory is controlled by `memcpy()`, which is - * safe and portable. - * - * Unfortunately, on some target/compiler combinations, the generated assembly - * is sub-optimal. - * - * The below switch allow selection of a different access method - * in the search for improved performance. - * Method 0 (default): - * Use `memcpy()`. Safe and portable. Default. - * Method 1: - * `__attribute__((packed))` statement. It depends on compiler extensions - * and is therefore not portable. - * This method is safe if your compiler supports it, and *generally* as - * fast or faster than `memcpy`. - * Method 2: - * Direct access via cast. This method doesn't depend on the compiler but - * violates the C standard. - * It can generate buggy code on targets which do not support unaligned - * memory accesses. - * But in some circumstances, it's the only known way to get the most - * performance (example: GCC + ARMv6) - * Method 3: - * Byteshift. This can generate the best code on old compilers which don't - * inline small `memcpy()` calls, and it might also be faster on big-endian - * systems which lack a native byteswap instruction. - * See https://stackoverflow.com/a/32095106/646947 for details. - * Prefer these methods in priority order (0 > 1 > 2 > 3) - */ -#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ -# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6) -# define XXH_FORCE_MEMORY_ACCESS 2 -# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ - (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) -# define XXH_FORCE_MEMORY_ACCESS 1 -# endif -#endif - -/*! - * XXH_ACCEPT_NULL_INPUT_POINTER: - * If the input pointer is NULL, xxHash's default behavior is to dereference it, - * triggering a segfault. - * When this macro is enabled, xxHash actively checks the input for a null pointer. - * If it is, the result for null input pointers is the same as a zero-length input. - */ -#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ -# define XXH_ACCEPT_NULL_INPUT_POINTER 0 -#endif - -/*! - * XXH_FORCE_ALIGN_CHECK: - * This is an important performance trick - * for architectures without decent unaligned memory access performance. - * It checks for input alignment, and when conditions are met, - * uses a "fast path" employing direct 32-bit/64-bit read, - * resulting in _dramatically faster_ read speed. - * - * The check costs one initial branch per hash, which is generally negligible, but not zero. - * Moreover, it's not useful to generate binary for an additional code path - * if memory access uses same instruction for both aligned and unaligned adresses. - * - * In these cases, the alignment check can be removed by setting this macro to 0. - * Then the code will always use unaligned memory access. - * Align check is automatically disabled on x86, x64 & arm64, - * which are platforms known to offer good unaligned memory accesses performance. - * - * This option does not affect XXH3 (only XXH32 and XXH64). - */ -#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ -# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ - || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ -# define XXH_FORCE_ALIGN_CHECK 0 -# else -# define XXH_FORCE_ALIGN_CHECK 1 -# endif -#endif - -/*! - * XXH_NO_INLINE_HINTS: - * - * By default, xxHash tries to force the compiler to inline almost all internal - * functions. - * - * This can usually improve performance due to reduced jumping and improved - * constant folding, but significantly increases the size of the binary which - * might not be favorable. - * - * Additionally, sometimes the forced inlining can be detrimental to performance, - * depending on the architecture. - * - * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the - * compiler full control on whether to inline or not. - * - * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using - * -fno-inline with GCC or Clang, this will automatically be defined. - */ -#ifndef XXH_NO_INLINE_HINTS -# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ - || defined(__NO_INLINE__) /* -O0, -fno-inline */ -# define XXH_NO_INLINE_HINTS 1 -# else -# define XXH_NO_INLINE_HINTS 0 -# endif -#endif - -/*! - * XXH_REROLL: - * Whether to reroll XXH32_finalize, and XXH64_finalize, - * instead of using an unrolled jump table/if statement loop. - * - * This is automatically defined on -Os/-Oz on GCC and Clang. - */ -#ifndef XXH_REROLL -# if defined(__OPTIMIZE_SIZE__) -# define XXH_REROLL 1 -# else -# define XXH_REROLL 0 -# endif -#endif - - -/* ************************************* -* Includes & Memory related functions -***************************************/ -/*! - * Modify the local functions below should you wish to use - * different memory routines for malloc() and free() - */ -#include <stdlib.h> - -static void* XXH_malloc(size_t s) { return malloc(s); } -static void XXH_free(void* p) { free(p); } - -/*! and for memcpy() */ -#include <string.h> -static void* XXH_memcpy(void* dest, const void* src, size_t size) -{ - return memcpy(dest,src,size); -} - -#include <limits.h> /* ULLONG_MAX */ - - -/* ************************************* -* Compiler Specific Options -***************************************/ -#ifdef _MSC_VER /* Visual Studio warning fix */ -# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ -#endif - -#if XXH_NO_INLINE_HINTS /* disable inlining hints */ -# if defined(__GNUC__) -# define XXH_FORCE_INLINE static __attribute__((unused)) -# else -# define XXH_FORCE_INLINE static -# endif -# define XXH_NO_INLINE static -/* enable inlining hints */ -#elif defined(_MSC_VER) /* Visual Studio */ -# define XXH_FORCE_INLINE static __forceinline -# define XXH_NO_INLINE static __declspec(noinline) -#elif defined(__GNUC__) -# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) -# define XXH_NO_INLINE static __attribute__((noinline)) -#elif defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ -# define XXH_FORCE_INLINE static inline -# define XXH_NO_INLINE static -#else -# define XXH_FORCE_INLINE static -# define XXH_NO_INLINE static -#endif - - - -/* ************************************* -* Debug -***************************************/ -/* - * XXH_DEBUGLEVEL is expected to be defined externally, typically via the - * compiler's command line options. The value must be a number. - */ -#ifndef XXH_DEBUGLEVEL -# ifdef DEBUGLEVEL /* backwards compat */ -# define XXH_DEBUGLEVEL DEBUGLEVEL -# else -# define XXH_DEBUGLEVEL 0 -# endif -#endif - -#if (XXH_DEBUGLEVEL>=1) -# include <assert.h> /* note: can still be disabled with NDEBUG */ -# define XXH_ASSERT(c) assert(c) -#else -# define XXH_ASSERT(c) ((void)0) -#endif - -/* note: use after variable declarations */ -#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0) - - -/* ************************************* -* Basic Types -***************************************/ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) -# include <stdint.h> - typedef uint8_t xxh_u8; -#else - typedef unsigned char xxh_u8; -#endif -typedef XXH32_hash_t xxh_u32; - -#ifdef XXH_OLD_NAMES -# define BYTE xxh_u8 -# define U8 xxh_u8 -# define U32 xxh_u32 -#endif - -/* *** Memory access *** */ - -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) -/* - * Manual byteshift. Best for old compilers which don't inline memcpy. - * We actually directly use XXH_readLE32 and XXH_readBE32. - */ -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) - -/* - * Force direct memory access. Only works on CPU which support unaligned memory - * access in hardware. - */ -static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } - -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) - -/* - * __pack instructions are safer but compiler specific, hence potentially - * problematic for some compilers. - * - * Currently only defined for GCC and ICC. - */ -#ifdef XXH_OLD_NAMES -typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; -#endif -static xxh_u32 XXH_read32(const void* ptr) -{ - typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; - return ((const xxh_unalign*)ptr)->u32; -} - -#else - -/* - * Portable and safe solution. Generally efficient. - * see: https://stackoverflow.com/a/32095106/646947 - */ -static xxh_u32 XXH_read32(const void* memPtr) -{ - xxh_u32 val; - memcpy(&val, memPtr, sizeof(val)); - return val; -} - -#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ - - -/* *** Endianess *** */ -typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; - -/*! - * XXH_CPU_LITTLE_ENDIAN: - * Defined to 1 if the target is little endian, or 0 if it is big endian. - * It can be defined externally, for example on the compiler command line. - * - * If it is not defined, a runtime check (which is usually constant folded) - * is used instead. - */ -#ifndef XXH_CPU_LITTLE_ENDIAN -/* - * Try to detect endianness automatically, to avoid the nonstandard behavior - * in `XXH_isLittleEndian()` - */ -# if defined(_WIN32) /* Windows is always little endian */ \ - || defined(__LITTLE_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) -# define XXH_CPU_LITTLE_ENDIAN 1 -# elif defined(__BIG_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -# define XXH_CPU_LITTLE_ENDIAN 0 -# else -/* - * runtime test, presumed to simplify to a constant by compiler - */ -static int XXH_isLittleEndian(void) -{ - /* - * Portable and well-defined behavior. - * Don't use static: it is detrimental to performance. - */ - const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; - return one.c[0]; -} -# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() -# endif -#endif - - - - -/* **************************************** -* Compiler-specific Functions and Macros -******************************************/ -#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) - -#ifdef __has_builtin -# define XXH_HAS_BUILTIN(x) __has_builtin(x) -#else -# define XXH_HAS_BUILTIN(x) 0 -#endif - -#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ - && XXH_HAS_BUILTIN(__builtin_rotateleft64) -# define XXH_rotl32 __builtin_rotateleft32 -# define XXH_rotl64 __builtin_rotateleft64 -/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ -#elif defined(_MSC_VER) -# define XXH_rotl32(x,r) _rotl(x,r) -# define XXH_rotl64(x,r) _rotl64(x,r) -#else -# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) -# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) -#endif - -#if defined(_MSC_VER) /* Visual Studio */ -# define XXH_swap32 _byteswap_ulong -#elif XXH_GCC_VERSION >= 403 -# define XXH_swap32 __builtin_bswap32 -#else -static xxh_u32 XXH_swap32 (xxh_u32 x) -{ - return ((x << 24) & 0xff000000 ) | - ((x << 8) & 0x00ff0000 ) | - ((x >> 8) & 0x0000ff00 ) | - ((x >> 24) & 0x000000ff ); -} -#endif - - -/* *************************** -* Memory reads -*****************************/ -typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; - -/* - * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. - * - * This is ideal for older compilers which don't inline memcpy. - */ -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) - -XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[0] - | ((xxh_u32)bytePtr[1] << 8) - | ((xxh_u32)bytePtr[2] << 16) - | ((xxh_u32)bytePtr[3] << 24); -} - -XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[3] - | ((xxh_u32)bytePtr[2] << 8) - | ((xxh_u32)bytePtr[1] << 16) - | ((xxh_u32)bytePtr[0] << 24); -} - -#else -XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); -} - -static xxh_u32 XXH_readBE32(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); -} -#endif - -XXH_FORCE_INLINE xxh_u32 -XXH_readLE32_align(const void* ptr, XXH_alignment align) -{ - if (align==XXH_unaligned) { - return XXH_readLE32(ptr); - } else { - return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); - } -} - - -/* ************************************* -* Misc -***************************************/ -XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } - - -/* ******************************************************************* -* 32-bit hash functions -*********************************************************************/ -static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ -static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ -static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ -static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ -static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */ - -#ifdef XXH_OLD_NAMES -# define PRIME32_1 XXH_PRIME32_1 -# define PRIME32_2 XXH_PRIME32_2 -# define PRIME32_3 XXH_PRIME32_3 -# define PRIME32_4 XXH_PRIME32_4 -# define PRIME32_5 XXH_PRIME32_5 -#endif - -static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) -{ - acc += input * XXH_PRIME32_2; - acc = XXH_rotl32(acc, 13); - acc *= XXH_PRIME32_1; -#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE) - /* - * UGLY HACK: - * This inline assembly hack forces acc into a normal register. This is the - * only thing that prevents GCC and Clang from autovectorizing the XXH32 - * loop (pragmas and attributes don't work for some resason) without globally - * disabling SSE4.1. - * - * The reason we want to avoid vectorization is because despite working on - * 4 integers at a time, there are multiple factors slowing XXH32 down on - * SSE4: - * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on - * newer chips!) making it slightly slower to multiply four integers at - * once compared to four integers independently. Even when pmulld was - * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE - * just to multiply unless doing a long operation. - * - * - Four instructions are required to rotate, - * movqda tmp, v // not required with VEX encoding - * pslld tmp, 13 // tmp <<= 13 - * psrld v, 19 // x >>= 19 - * por v, tmp // x |= tmp - * compared to one for scalar: - * roll v, 13 // reliably fast across the board - * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason - * - * - Instruction level parallelism is actually more beneficial here because - * the SIMD actually serializes this operation: While v1 is rotating, v2 - * can load data, while v3 can multiply. SSE forces them to operate - * together. - * - * How this hack works: - * __asm__("" // Declare an assembly block but don't declare any instructions - * : // However, as an Input/Output Operand, - * "+r" // constrain a read/write operand (+) as a general purpose register (r). - * (acc) // and set acc as the operand - * ); - * - * Because of the 'r', the compiler has promised that seed will be in a - * general purpose register and the '+' says that it will be 'read/write', - * so it has to assume it has changed. It is like volatile without all the - * loads and stores. - * - * Since the argument has to be in a normal register (not an SSE register), - * each time XXH32_round is called, it is impossible to vectorize. - */ - __asm__("" : "+r" (acc)); -#endif - return acc; -} - -/* mix all bits */ -static xxh_u32 XXH32_avalanche(xxh_u32 h32) -{ - h32 ^= h32 >> 15; - h32 *= XXH_PRIME32_2; - h32 ^= h32 >> 13; - h32 *= XXH_PRIME32_3; - h32 ^= h32 >> 16; - return(h32); -} - -#define XXH_get32bits(p) XXH_readLE32_align(p, align) - -static xxh_u32 -XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) -{ -#define XXH_PROCESS1 do { \ - h32 += (*ptr++) * XXH_PRIME32_5; \ - h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ -} while (0) - -#define XXH_PROCESS4 do { \ - h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ - ptr += 4; \ - h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ -} while (0) - - /* Compact rerolled version */ - if (XXH_REROLL) { - len &= 15; - while (len >= 4) { - XXH_PROCESS4; - len -= 4; - } - while (len > 0) { - XXH_PROCESS1; - --len; - } - return XXH32_avalanche(h32); - } else { - switch(len&15) /* or switch(bEnd - p) */ { - case 12: XXH_PROCESS4; - /* fallthrough */ - case 8: XXH_PROCESS4; - /* fallthrough */ - case 4: XXH_PROCESS4; - return XXH32_avalanche(h32); - - case 13: XXH_PROCESS4; - /* fallthrough */ - case 9: XXH_PROCESS4; - /* fallthrough */ - case 5: XXH_PROCESS4; - XXH_PROCESS1; - return XXH32_avalanche(h32); - - case 14: XXH_PROCESS4; - /* fallthrough */ - case 10: XXH_PROCESS4; - /* fallthrough */ - case 6: XXH_PROCESS4; - XXH_PROCESS1; - XXH_PROCESS1; - return XXH32_avalanche(h32); - - case 15: XXH_PROCESS4; - /* fallthrough */ - case 11: XXH_PROCESS4; - /* fallthrough */ - case 7: XXH_PROCESS4; - /* fallthrough */ - case 3: XXH_PROCESS1; - /* fallthrough */ - case 2: XXH_PROCESS1; - /* fallthrough */ - case 1: XXH_PROCESS1; - /* fallthrough */ - case 0: return XXH32_avalanche(h32); - } - XXH_ASSERT(0); - return h32; /* reaching this point is deemed impossible */ - } -} - -#ifdef XXH_OLD_NAMES -# define PROCESS1 XXH_PROCESS1 -# define PROCESS4 XXH_PROCESS4 -#else -# undef XXH_PROCESS1 -# undef XXH_PROCESS4 -#endif - -XXH_FORCE_INLINE xxh_u32 -XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) -{ - const xxh_u8* bEnd = input + len; - xxh_u32 h32; - -#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) - if (input==NULL) { - len=0; - bEnd=input=(const xxh_u8*)(size_t)16; - } -#endif - - if (len>=16) { - const xxh_u8* const limit = bEnd - 15; - xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; - xxh_u32 v2 = seed + XXH_PRIME32_2; - xxh_u32 v3 = seed + 0; - xxh_u32 v4 = seed - XXH_PRIME32_1; - - do { - v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; - v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; - v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; - v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; - } while (input < limit); - - h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) - + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); - } else { - h32 = seed + XXH_PRIME32_5; - } - - h32 += (xxh_u32)len; - - return XXH32_finalize(h32, input, len&15, align); -} - - -XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) -{ -#if 0 - /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ - XXH32_state_t state; - XXH32_reset(&state, seed); - XXH32_update(&state, (const xxh_u8*)input, len); - return XXH32_digest(&state); - -#else - - if (XXH_FORCE_ALIGN_CHECK) { - if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ - return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); - } } - - return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); -#endif -} - - - -/******* Hash streaming *******/ - -XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) -{ - return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); -} -XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) -{ - XXH_free(statePtr); - return XXH_OK; -} - -XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) -{ - memcpy(dstState, srcState, sizeof(*dstState)); -} - -XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) -{ - XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ - memset(&state, 0, sizeof(state)); - state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; - state.v2 = seed + XXH_PRIME32_2; - state.v3 = seed + 0; - state.v4 = seed - XXH_PRIME32_1; - /* do not write into reserved, planned to be removed in a future version */ - memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); - return XXH_OK; -} - - -XXH_PUBLIC_API XXH_errorcode -XXH32_update(XXH32_state_t* state, const void* input, size_t len) -{ - if (input==NULL) -#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) - return XXH_OK; -#else - return XXH_ERROR; -#endif - - { const xxh_u8* p = (const xxh_u8*)input; - const xxh_u8* const bEnd = p + len; - - state->total_len_32 += (XXH32_hash_t)len; - state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); - - if (state->memsize + len < 16) { /* fill in tmp buffer */ - XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); - state->memsize += (XXH32_hash_t)len; - return XXH_OK; - } - - if (state->memsize) { /* some data left from previous update */ - XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); - { const xxh_u32* p32 = state->mem32; - state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++; - state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++; - state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++; - state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); - } - p += 16-state->memsize; - state->memsize = 0; - } - - if (p <= bEnd-16) { - const xxh_u8* const limit = bEnd - 16; - xxh_u32 v1 = state->v1; - xxh_u32 v2 = state->v2; - xxh_u32 v3 = state->v3; - xxh_u32 v4 = state->v4; - - do { - v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4; - v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4; - v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4; - v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4; - } while (p<=limit); - - state->v1 = v1; - state->v2 = v2; - state->v3 = v3; - state->v4 = v4; - } - - if (p < bEnd) { - XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); - state->memsize = (unsigned)(bEnd-p); - } - } - - return XXH_OK; -} - - -XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state) -{ - xxh_u32 h32; - - if (state->large_len) { - h32 = XXH_rotl32(state->v1, 1) - + XXH_rotl32(state->v2, 7) - + XXH_rotl32(state->v3, 12) - + XXH_rotl32(state->v4, 18); - } else { - h32 = state->v3 /* == seed */ + XXH_PRIME32_5; - } - - h32 += state->total_len_32; - - return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); -} - - -/******* Canonical representation *******/ - -/* - * The default return values from XXH functions are unsigned 32 and 64 bit - * integers. - * - * The canonical representation uses big endian convention, the same convention - * as human-readable numbers (large digits first). - * - * This way, hash values can be written into a file or buffer, remaining - * comparable across different systems. - * - * The following functions allow transformation of hash values to and from their - * canonical format. - */ -XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); - memcpy(dst, &hash, sizeof(*dst)); -} - -XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) -{ - return XXH_readBE32(src); -} - - -#ifndef XXH_NO_LONG_LONG - -/* ******************************************************************* -* 64-bit hash functions -*********************************************************************/ - -/******* Memory access *******/ - -typedef XXH64_hash_t xxh_u64; - -#ifdef XXH_OLD_NAMES -# define U64 xxh_u64 -#endif - -/*! - * XXH_REROLL_XXH64: - * Whether to reroll the XXH64_finalize() loop. - * - * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a - * performance gain on 64-bit hosts, as only one jump is required. - * - * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit - * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial - * to unroll. The code becomes ridiculously large (the largest function in the - * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is - * also slightly faster because it fits into cache better and is more likely - * to be inlined by the compiler. - * - * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. - */ -#ifndef XXH_REROLL_XXH64 -# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ - || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \ - || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \ - || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ - || defined(__mips64__) || defined(__mips64)) /* mips64 */ \ - || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ -# define XXH_REROLL_XXH64 1 -# else -# define XXH_REROLL_XXH64 0 -# endif -#endif /* !defined(XXH_REROLL_XXH64) */ - -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) -/* - * Manual byteshift. Best for old compilers which don't inline memcpy. - * We actually directly use XXH_readLE64 and XXH_readBE64. - */ -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) - -/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ -static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; } - -#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) - -/* - * __pack instructions are safer, but compiler specific, hence potentially - * problematic for some compilers. - * - * Currently only defined for GCC and ICC. - */ -#ifdef XXH_OLD_NAMES -typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; -#endif -static xxh_u64 XXH_read64(const void* ptr) -{ - typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; - return ((const xxh_unalign64*)ptr)->u64; -} - -#else - -/* - * Portable and safe solution. Generally efficient. - * see: https://stackoverflow.com/a/32095106/646947 - */ -static xxh_u64 XXH_read64(const void* memPtr) -{ - xxh_u64 val; - memcpy(&val, memPtr, sizeof(val)); - return val; -} - -#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ - -#if defined(_MSC_VER) /* Visual Studio */ -# define XXH_swap64 _byteswap_uint64 -#elif XXH_GCC_VERSION >= 403 -# define XXH_swap64 __builtin_bswap64 -#else -static xxh_u64 XXH_swap64 (xxh_u64 x) -{ - return ((x << 56) & 0xff00000000000000ULL) | - ((x << 40) & 0x00ff000000000000ULL) | - ((x << 24) & 0x0000ff0000000000ULL) | - ((x << 8) & 0x000000ff00000000ULL) | - ((x >> 8) & 0x00000000ff000000ULL) | - ((x >> 24) & 0x0000000000ff0000ULL) | - ((x >> 40) & 0x000000000000ff00ULL) | - ((x >> 56) & 0x00000000000000ffULL); -} -#endif - - -/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ -#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) - -XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[0] - | ((xxh_u64)bytePtr[1] << 8) - | ((xxh_u64)bytePtr[2] << 16) - | ((xxh_u64)bytePtr[3] << 24) - | ((xxh_u64)bytePtr[4] << 32) - | ((xxh_u64)bytePtr[5] << 40) - | ((xxh_u64)bytePtr[6] << 48) - | ((xxh_u64)bytePtr[7] << 56); -} - -XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) -{ - const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; - return bytePtr[7] - | ((xxh_u64)bytePtr[6] << 8) - | ((xxh_u64)bytePtr[5] << 16) - | ((xxh_u64)bytePtr[4] << 24) - | ((xxh_u64)bytePtr[3] << 32) - | ((xxh_u64)bytePtr[2] << 40) - | ((xxh_u64)bytePtr[1] << 48) - | ((xxh_u64)bytePtr[0] << 56); -} - -#else -XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); -} - -static xxh_u64 XXH_readBE64(const void* ptr) -{ - return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); -} -#endif - -XXH_FORCE_INLINE xxh_u64 -XXH_readLE64_align(const void* ptr, XXH_alignment align) -{ - if (align==XXH_unaligned) - return XXH_readLE64(ptr); - else - return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); -} - - -/******* xxh64 *******/ - -static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ -static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ -static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ -static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */ -static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */ - -#ifdef XXH_OLD_NAMES -# define PRIME64_1 XXH_PRIME64_1 -# define PRIME64_2 XXH_PRIME64_2 -# define PRIME64_3 XXH_PRIME64_3 -# define PRIME64_4 XXH_PRIME64_4 -# define PRIME64_5 XXH_PRIME64_5 -#endif - -static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) -{ - acc += input * XXH_PRIME64_2; - acc = XXH_rotl64(acc, 31); - acc *= XXH_PRIME64_1; - return acc; -} - -static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) -{ - val = XXH64_round(0, val); - acc ^= val; - acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; - return acc; -} - -static xxh_u64 XXH64_avalanche(xxh_u64 h64) -{ - h64 ^= h64 >> 33; - h64 *= XXH_PRIME64_2; - h64 ^= h64 >> 29; - h64 *= XXH_PRIME64_3; - h64 ^= h64 >> 32; - return h64; -} - - -#define XXH_get64bits(p) XXH_readLE64_align(p, align) - -static xxh_u64 -XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) -{ -#define XXH_PROCESS1_64 do { \ - h64 ^= (*ptr++) * XXH_PRIME64_5; \ - h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \ -} while (0) - -#define XXH_PROCESS4_64 do { \ - h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \ - ptr += 4; \ - h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \ -} while (0) - -#define XXH_PROCESS8_64 do { \ - xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ - ptr += 8; \ - h64 ^= k1; \ - h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \ -} while (0) - - /* Rerolled version for 32-bit targets is faster and much smaller. */ - if (XXH_REROLL || XXH_REROLL_XXH64) { - len &= 31; - while (len >= 8) { - XXH_PROCESS8_64; - len -= 8; - } - if (len >= 4) { - XXH_PROCESS4_64; - len -= 4; - } - while (len > 0) { - XXH_PROCESS1_64; - --len; - } - return XXH64_avalanche(h64); - } else { - switch(len & 31) { - case 24: XXH_PROCESS8_64; - /* fallthrough */ - case 16: XXH_PROCESS8_64; - /* fallthrough */ - case 8: XXH_PROCESS8_64; - return XXH64_avalanche(h64); - - case 28: XXH_PROCESS8_64; - /* fallthrough */ - case 20: XXH_PROCESS8_64; - /* fallthrough */ - case 12: XXH_PROCESS8_64; - /* fallthrough */ - case 4: XXH_PROCESS4_64; - return XXH64_avalanche(h64); - - case 25: XXH_PROCESS8_64; - /* fallthrough */ - case 17: XXH_PROCESS8_64; - /* fallthrough */ - case 9: XXH_PROCESS8_64; - XXH_PROCESS1_64; - return XXH64_avalanche(h64); - - case 29: XXH_PROCESS8_64; - /* fallthrough */ - case 21: XXH_PROCESS8_64; - /* fallthrough */ - case 13: XXH_PROCESS8_64; - /* fallthrough */ - case 5: XXH_PROCESS4_64; - XXH_PROCESS1_64; - return XXH64_avalanche(h64); - - case 26: XXH_PROCESS8_64; - /* fallthrough */ - case 18: XXH_PROCESS8_64; - /* fallthrough */ - case 10: XXH_PROCESS8_64; - XXH_PROCESS1_64; - XXH_PROCESS1_64; - return XXH64_avalanche(h64); - - case 30: XXH_PROCESS8_64; - /* fallthrough */ - case 22: XXH_PROCESS8_64; - /* fallthrough */ - case 14: XXH_PROCESS8_64; - /* fallthrough */ - case 6: XXH_PROCESS4_64; - XXH_PROCESS1_64; - XXH_PROCESS1_64; - return XXH64_avalanche(h64); - - case 27: XXH_PROCESS8_64; - /* fallthrough */ - case 19: XXH_PROCESS8_64; - /* fallthrough */ - case 11: XXH_PROCESS8_64; - XXH_PROCESS1_64; - XXH_PROCESS1_64; - XXH_PROCESS1_64; - return XXH64_avalanche(h64); - - case 31: XXH_PROCESS8_64; - /* fallthrough */ - case 23: XXH_PROCESS8_64; - /* fallthrough */ - case 15: XXH_PROCESS8_64; - /* fallthrough */ - case 7: XXH_PROCESS4_64; - /* fallthrough */ - case 3: XXH_PROCESS1_64; - /* fallthrough */ - case 2: XXH_PROCESS1_64; - /* fallthrough */ - case 1: XXH_PROCESS1_64; - /* fallthrough */ - case 0: return XXH64_avalanche(h64); - } - } - /* impossible to reach */ - XXH_ASSERT(0); - return 0; /* unreachable, but some compilers complain without it */ -} - -#ifdef XXH_OLD_NAMES -# define PROCESS1_64 XXH_PROCESS1_64 -# define PROCESS4_64 XXH_PROCESS4_64 -# define PROCESS8_64 XXH_PROCESS8_64 -#else -# undef XXH_PROCESS1_64 -# undef XXH_PROCESS4_64 -# undef XXH_PROCESS8_64 -#endif - -XXH_FORCE_INLINE xxh_u64 -XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) -{ - const xxh_u8* bEnd = input + len; - xxh_u64 h64; - -#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) - if (input==NULL) { - len=0; - bEnd=input=(const xxh_u8*)(size_t)32; - } -#endif - - if (len>=32) { - const xxh_u8* const limit = bEnd - 32; - xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; - xxh_u64 v2 = seed + XXH_PRIME64_2; - xxh_u64 v3 = seed + 0; - xxh_u64 v4 = seed - XXH_PRIME64_1; - - do { - v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; - v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; - v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; - v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; - } while (input<=limit); - - h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); - h64 = XXH64_mergeRound(h64, v1); - h64 = XXH64_mergeRound(h64, v2); - h64 = XXH64_mergeRound(h64, v3); - h64 = XXH64_mergeRound(h64, v4); - - } else { - h64 = seed + XXH_PRIME64_5; - } - - h64 += (xxh_u64) len; - - return XXH64_finalize(h64, input, len, align); -} - - -XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) -{ -#if 0 - /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ - XXH64_state_t state; - XXH64_reset(&state, seed); - XXH64_update(&state, (const xxh_u8*)input, len); - return XXH64_digest(&state); - -#else - - if (XXH_FORCE_ALIGN_CHECK) { - if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ - return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); - } } - - return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); - -#endif -} - -/******* Hash Streaming *******/ - -XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) -{ - return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); -} -XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) -{ - XXH_free(statePtr); - return XXH_OK; -} - -XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) -{ - memcpy(dstState, srcState, sizeof(*dstState)); -} - -XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) -{ - XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ - memset(&state, 0, sizeof(state)); - state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; - state.v2 = seed + XXH_PRIME64_2; - state.v3 = seed + 0; - state.v4 = seed - XXH_PRIME64_1; - /* do not write into reserved64, might be removed in a future version */ - memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH64_update (XXH64_state_t* state, const void* input, size_t len) -{ - if (input==NULL) -#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) - return XXH_OK; -#else - return XXH_ERROR; -#endif - - { const xxh_u8* p = (const xxh_u8*)input; - const xxh_u8* const bEnd = p + len; - - state->total_len += len; - - if (state->memsize + len < 32) { /* fill in tmp buffer */ - XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); - state->memsize += (xxh_u32)len; - return XXH_OK; - } - - if (state->memsize) { /* tmp buffer is full */ - XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); - state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0)); - state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1)); - state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2)); - state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3)); - p += 32-state->memsize; - state->memsize = 0; - } - - if (p+32 <= bEnd) { - const xxh_u8* const limit = bEnd - 32; - xxh_u64 v1 = state->v1; - xxh_u64 v2 = state->v2; - xxh_u64 v3 = state->v3; - xxh_u64 v4 = state->v4; - - do { - v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8; - v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8; - v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8; - v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8; - } while (p<=limit); - - state->v1 = v1; - state->v2 = v2; - state->v3 = v3; - state->v4 = v4; - } - - if (p < bEnd) { - XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); - state->memsize = (unsigned)(bEnd-p); - } - } - - return XXH_OK; -} - - -XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state) -{ - xxh_u64 h64; - - if (state->total_len >= 32) { - xxh_u64 const v1 = state->v1; - xxh_u64 const v2 = state->v2; - xxh_u64 const v3 = state->v3; - xxh_u64 const v4 = state->v4; - - h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); - h64 = XXH64_mergeRound(h64, v1); - h64 = XXH64_mergeRound(h64, v2); - h64 = XXH64_mergeRound(h64, v3); - h64 = XXH64_mergeRound(h64, v4); - } else { - h64 = state->v3 /*seed*/ + XXH_PRIME64_5; - } - - h64 += (xxh_u64) state->total_len; - - return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); -} - - -/******* Canonical representation *******/ - -XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); - memcpy(dst, &hash, sizeof(*dst)); -} - -XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) -{ - return XXH_readBE64(src); -} - - - -/* ********************************************************************* -* XXH3 -* New generation hash designed for speed on small keys and vectorization -************************************************************************ */ - -/* === Compiler specifics === */ - -#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ -# define XXH_RESTRICT restrict -#else -/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ -# define XXH_RESTRICT /* disable */ -#endif - -#if (defined(__GNUC__) && (__GNUC__ >= 3)) \ - || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ - || defined(__clang__) -# define XXH_likely(x) __builtin_expect(x, 1) -# define XXH_unlikely(x) __builtin_expect(x, 0) -#else -# define XXH_likely(x) (x) -# define XXH_unlikely(x) (x) -#endif - -#if defined(__GNUC__) -# if defined(__AVX2__) -# include <immintrin.h> -# elif defined(__SSE2__) -# include <emmintrin.h> -# elif defined(__ARM_NEON__) || defined(__ARM_NEON) -# define inline __inline__ /* circumvent a clang bug */ -# include <arm_neon.h> -# undef inline -# endif -#elif defined(_MSC_VER) -# include <intrin.h> -#endif - -/* - * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while - * remaining a true 64-bit/128-bit hash function. - * - * This is done by prioritizing a subset of 64-bit operations that can be - * emulated without too many steps on the average 32-bit machine. - * - * For example, these two lines seem similar, and run equally fast on 64-bit: - * - * xxh_u64 x; - * x ^= (x >> 47); // good - * x ^= (x >> 13); // bad - * - * However, to a 32-bit machine, there is a major difference. - * - * x ^= (x >> 47) looks like this: - * - * x.lo ^= (x.hi >> (47 - 32)); - * - * while x ^= (x >> 13) looks like this: - * - * // note: funnel shifts are not usually cheap. - * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); - * x.hi ^= (x.hi >> 13); - * - * The first one is significantly faster than the second, simply because the - * shift is larger than 32. This means: - * - All the bits we need are in the upper 32 bits, so we can ignore the lower - * 32 bits in the shift. - * - The shift result will always fit in the lower 32 bits, and therefore, - * we can ignore the upper 32 bits in the xor. - * - * Thanks to this optimization, XXH3 only requires these features to be efficient: - * - * - Usable unaligned access - * - A 32-bit or 64-bit ALU - * - If 32-bit, a decent ADC instruction - * - A 32 or 64-bit multiply with a 64-bit result - * - For the 128-bit variant, a decent byteswap helps short inputs. - * - * The first two are already required by XXH32, and almost all 32-bit and 64-bit - * platforms which can run XXH32 can run XXH3 efficiently. - * - * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one - * notable exception. - * - * First of all, Thumb-1 lacks support for the UMULL instruction which - * performs the important long multiply. This means numerous __aeabi_lmul - * calls. - * - * Second of all, the 8 functional registers are just not enough. - * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need - * Lo registers, and this shuffling results in thousands more MOVs than A32. - * - * A32 and T32 don't have this limitation. They can access all 14 registers, - * do a 32->64 multiply with UMULL, and the flexible operand allowing free - * shifts is helpful, too. - * - * Therefore, we do a quick sanity check. - * - * If compiling Thumb-1 for a target which supports ARM instructions, we will - * emit a warning, as it is not a "sane" platform to compile for. - * - * Usually, if this happens, it is because of an accident and you probably need - * to specify -march, as you likely meant to compile for a newer architecture. - * - * Credit: large sections of the vectorial and asm source code paths - * have been contributed by @easyaspi314 - */ -#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) -# warning "XXH3 is highly inefficient without ARM or Thumb-2." -#endif - -/* ========================================== - * Vectorization detection - * ========================================== */ -#define XXH_SCALAR 0 /* Portable scalar version */ -#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ -#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ -#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */ -#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */ -#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */ - -#ifndef XXH_VECTOR /* can be defined on command line */ -# if defined(__AVX512F__) -# define XXH_VECTOR XXH_AVX512 -# elif defined(__AVX2__) -# define XXH_VECTOR XXH_AVX2 -# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) -# define XXH_VECTOR XXH_SSE2 -# elif defined(__GNUC__) /* msvc support maybe later */ \ - && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ - && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) -# define XXH_VECTOR XXH_NEON -# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ - || (defined(__s390x__) && defined(__VEC__)) \ - && defined(__GNUC__) /* TODO: IBM XL */ -# define XXH_VECTOR XXH_VSX -# else -# define XXH_VECTOR XXH_SCALAR -# endif -#endif - -/* - * Controls the alignment of the accumulator, - * for compatibility with aligned vector loads, which are usually faster. - */ -#ifndef XXH_ACC_ALIGN -# if defined(XXH_X86DISPATCH) -# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ -# elif XXH_VECTOR == XXH_SCALAR /* scalar */ -# define XXH_ACC_ALIGN 8 -# elif XXH_VECTOR == XXH_SSE2 /* sse2 */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_AVX2 /* avx2 */ -# define XXH_ACC_ALIGN 32 -# elif XXH_VECTOR == XXH_NEON /* neon */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_VSX /* vsx */ -# define XXH_ACC_ALIGN 16 -# elif XXH_VECTOR == XXH_AVX512 /* avx512 */ -# define XXH_ACC_ALIGN 64 -# endif -#endif - -#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ - || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 -# define XXH_SEC_ALIGN XXH_ACC_ALIGN -#else -# define XXH_SEC_ALIGN 8 -#endif - -/* - * UGLY HACK: - * GCC usually generates the best code with -O3 for xxHash. - * - * However, when targeting AVX2, it is overzealous in its unrolling resulting - * in code roughly 3/4 the speed of Clang. - * - * There are other issues, such as GCC splitting _mm256_loadu_si256 into - * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which - * only applies to Sandy and Ivy Bridge... which don't even support AVX2. - * - * That is why when compiling the AVX2 version, it is recommended to use either - * -O2 -mavx2 -march=haswell - * or - * -O2 -mavx2 -mno-avx256-split-unaligned-load - * for decent performance, or to use Clang instead. - * - * Fortunately, we can control the first one with a pragma that forces GCC into - * -O2, but the other one we can't control without "failed to inline always - * inline function due to target mismatch" warnings. - */ -#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ - && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ -# pragma GCC push_options -# pragma GCC optimize("-O2") -#endif - - -#if XXH_VECTOR == XXH_NEON -/* - * NEON's setup for vmlal_u32 is a little more complicated than it is on - * SSE2, AVX2, and VSX. - * - * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. - * - * To do the same operation, the 128-bit 'Q' register needs to be split into - * two 64-bit 'D' registers, performing this operation:: - * - * [ a | b ] - * | '---------. .--------' | - * | x | - * | .---------' '--------. | - * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] - * - * Due to significant changes in aarch64, the fastest method for aarch64 is - * completely different than the fastest method for ARMv7-A. - * - * ARMv7-A treats D registers as unions overlaying Q registers, so modifying - * D11 will modify the high half of Q5. This is similar to how modifying AH - * will only affect bits 8-15 of AX on x86. - * - * VZIP takes two registers, and puts even lanes in one register and odd lanes - * in the other. - * - * On ARMv7-A, this strangely modifies both parameters in place instead of - * taking the usual 3-operand form. - * - * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the - * lower and upper halves of the Q register to end up with the high and low - * halves where we want - all in one instruction. - * - * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } - * - * Unfortunately we need inline assembly for this: Instructions modifying two - * registers at once is not possible in GCC or Clang's IR, and they have to - * create a copy. - * - * aarch64 requires a different approach. - * - * In order to make it easier to write a decent compiler for aarch64, many - * quirks were removed, such as conditional execution. - * - * NEON was also affected by this. - * - * aarch64 cannot access the high bits of a Q-form register, and writes to a - * D-form register zero the high bits, similar to how writes to W-form scalar - * registers (or DWORD registers on x86_64) work. - * - * The formerly free vget_high intrinsics now require a vext (with a few - * exceptions) - * - * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent - * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one - * operand. - * - * The equivalent of the VZIP.32 on the lower and upper halves would be this - * mess: - * - * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } - * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } - * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } - * - * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): - * - * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); - * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); - * - * This is available on ARMv7-A, but is less efficient than a single VZIP.32. - */ - -/* - * Function-like macro: - * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) - * { - * outLo = (uint32x2_t)(in & 0xFFFFFFFF); - * outHi = (uint32x2_t)(in >> 32); - * in = UNDEFINED; - * } - */ -# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ - && defined(__GNUC__) \ - && !defined(__aarch64__) && !defined(__arm64__) -# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ - do { \ - /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ - /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ - /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ - __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ - (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ - (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ - } while (0) -# else -# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ - do { \ - (outLo) = vmovn_u64 (in); \ - (outHi) = vshrn_n_u64 ((in), 32); \ - } while (0) -# endif -#endif /* XXH_VECTOR == XXH_NEON */ - -/* - * VSX and Z Vector helpers. - * - * This is very messy, and any pull requests to clean this up are welcome. - * - * There are a lot of problems with supporting VSX and s390x, due to - * inconsistent intrinsics, spotty coverage, and multiple endiannesses. - */ -#if XXH_VECTOR == XXH_VSX -# if defined(__s390x__) -# include <s390intrin.h> -# else -/* gcc's altivec.h can have the unwanted consequence to unconditionally - * #define bool, vector, and pixel keywords, - * with bad consequences for programs already using these keywords for other purposes. - * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. - * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, - * but it seems that, in some cases, it isn't. - * Force the build macro to be defined, so that keywords are not altered. - */ -# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) -# define __APPLE_ALTIVEC__ -# endif -# include <altivec.h> -# endif - -typedef __vector unsigned long long xxh_u64x2; -typedef __vector unsigned char xxh_u8x16; -typedef __vector unsigned xxh_u32x4; - -# ifndef XXH_VSX_BE -# if defined(__BIG_ENDIAN__) \ - || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) -# define XXH_VSX_BE 1 -# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ -# warning "-maltivec=be is not recommended. Please use native endianness." -# define XXH_VSX_BE 1 -# else -# define XXH_VSX_BE 0 -# endif -# endif /* !defined(XXH_VSX_BE) */ - -# if XXH_VSX_BE -/* A wrapper for POWER9's vec_revb. */ -# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) -# define XXH_vec_revb vec_revb -# else -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) -{ - xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, - 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; - return vec_perm(val, val, vByteSwap); -} -# endif -# endif /* XXH_VSX_BE */ - -/* - * Performs an unaligned load and byte swaps it on big endian. - */ -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) -{ - xxh_u64x2 ret; - memcpy(&ret, ptr, sizeof(xxh_u64x2)); -# if XXH_VSX_BE - ret = XXH_vec_revb(ret); -# endif - return ret; -} - -/* - * vec_mulo and vec_mule are very problematic intrinsics on PowerPC - * - * These intrinsics weren't added until GCC 8, despite existing for a while, - * and they are endian dependent. Also, their meaning swap depending on version. - * */ -# if defined(__s390x__) - /* s390x is always big endian, no issue on this platform */ -# define XXH_vec_mulo vec_mulo -# define XXH_vec_mule vec_mule -# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) -/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ -# define XXH_vec_mulo __builtin_altivec_vmulouw -# define XXH_vec_mule __builtin_altivec_vmuleuw -# else -/* gcc needs inline assembly */ -/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) -{ - xxh_u64x2 result; - __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); - return result; -} -XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) -{ - xxh_u64x2 result; - __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); - return result; -} -# endif /* XXH_vec_mulo, XXH_vec_mule */ -#endif /* XXH_VECTOR == XXH_VSX */ - - -/* prefetch - * can be disabled, by declaring XXH_NO_PREFETCH build macro */ -#if defined(XXH_NO_PREFETCH) -# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ -#else -# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ -# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ -# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) -# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) -# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) -# else -# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ -# endif -#endif /* XXH_NO_PREFETCH */ - - -/* ========================================== - * XXH3 default settings - * ========================================== */ - -#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ - -#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) -# error "default keyset is not large enough" -#endif - -/* Pseudorandom secret taken directly from FARSH */ -XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { - 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, - 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, - 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, - 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, - 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, - 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, - 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, - 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, - 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, - 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, - 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, - 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, -}; - - -#ifdef XXH_OLD_NAMES -# define kSecret XXH3_kSecret -#endif - -/* - * Calculates a 32-bit to 64-bit long multiply. - * - * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't - * need to (but it shouldn't need to anyways, it is about 7 instructions to do - * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we - * use that instead of the normal method. - * - * If you are compiling for platforms like Thumb-1 and don't have a better option, - * you may also want to write your own long multiply routine here. - * - * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) - * { - * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); - * } - */ -#if defined(_MSC_VER) && defined(_M_IX86) -# include <intrin.h> -# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) -#else -/* - * Downcast + upcast is usually better than masking on older compilers like - * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. - * - * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands - * and perform a full 64x64 multiply -- entirely redundant on 32-bit. - */ -# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) -#endif - -/* - * Calculates a 64->128-bit long multiply. - * - * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. - */ -static XXH128_hash_t -XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) -{ - /* - * GCC/Clang __uint128_t method. - * - * On most 64-bit targets, GCC and Clang define a __uint128_t type. - * This is usually the best way as it usually uses a native long 64-bit - * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. - * - * Usually. - * - * Despite being a 32-bit platform, Clang (and emscripten) define this type - * despite not having the arithmetic for it. This results in a laggy - * compiler builtin call which calculates a full 128-bit multiply. - * In that case it is best to use the portable one. - * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 - */ -#if defined(__GNUC__) && !defined(__wasm__) \ - && defined(__SIZEOF_INT128__) \ - || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) - - __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; - XXH128_hash_t r128; - r128.low64 = (xxh_u64)(product); - r128.high64 = (xxh_u64)(product >> 64); - return r128; - - /* - * MSVC for x64's _umul128 method. - * - * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); - * - * This compiles to single operand MUL on x64. - */ -#elif defined(_M_X64) || defined(_M_IA64) - -#ifndef _MSC_VER -# pragma intrinsic(_umul128) -#endif - xxh_u64 product_high; - xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); - XXH128_hash_t r128; - r128.low64 = product_low; - r128.high64 = product_high; - return r128; - -#else - /* - * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. - * - * This is a fast and simple grade school multiply, which is shown below - * with base 10 arithmetic instead of base 0x100000000. - * - * 9 3 // D2 lhs = 93 - * x 7 5 // D2 rhs = 75 - * ---------- - * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 - * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 - * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 - * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 - * --------- - * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 - * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 - * --------- - * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 - * - * The reasons for adding the products like this are: - * 1. It avoids manual carry tracking. Just like how - * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. - * This avoids a lot of complexity. - * - * 2. It hints for, and on Clang, compiles to, the powerful UMAAL - * instruction available in ARM's Digital Signal Processing extension - * in 32-bit ARMv6 and later, which is shown below: - * - * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) - * { - * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; - * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); - * *RdHi = (xxh_u32)(product >> 32); - * } - * - * This instruction was designed for efficient long multiplication, and - * allows this to be calculated in only 4 instructions at speeds - * comparable to some 64-bit ALUs. - * - * 3. It isn't terrible on other platforms. Usually this will be a couple - * of 32-bit ADD/ADCs. - */ - - /* First calculate all of the cross products. */ - xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); - xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); - xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); - xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); - - /* Now add the products together. These will never overflow. */ - xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; - xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; - xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); - - XXH128_hash_t r128; - r128.low64 = lower; - r128.high64 = upper; - return r128; -#endif -} - -/* - * Does a 64-bit to 128-bit multiply, then XOR folds it. - * - * The reason for the separate function is to prevent passing too many structs - * around by value. This will hopefully inline the multiply, but we don't force it. - */ -static xxh_u64 -XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) -{ - XXH128_hash_t product = XXH_mult64to128(lhs, rhs); - return product.low64 ^ product.high64; -} - -/* Seems to produce slightly better code on GCC for some reason. */ -XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) -{ - XXH_ASSERT(0 <= shift && shift < 64); - return v64 ^ (v64 >> shift); -} - -/* - * This is a fast avalanche stage, - * suitable when input bits are already partially mixed - */ -static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) -{ - h64 = XXH_xorshift64(h64, 37); - h64 *= 0x165667919E3779F9ULL; - h64 = XXH_xorshift64(h64, 32); - return h64; -} - -/* - * This is a stronger avalanche, - * inspired by Pelle Evensen's rrmxmx - * preferable when input has not been previously mixed - */ -static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) -{ - /* this mix is inspired by Pelle Evensen's rrmxmx */ - h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); - h64 *= 0x9FB21C651E98DF25ULL; - h64 ^= (h64 >> 35) + len ; - h64 *= 0x9FB21C651E98DF25ULL; - return XXH_xorshift64(h64, 28); -} - - -/* ========================================== - * Short keys - * ========================================== - * One of the shortcomings of XXH32 and XXH64 was that their performance was - * sub-optimal on short lengths. It used an iterative algorithm which strongly - * favored lengths that were a multiple of 4 or 8. - * - * Instead of iterating over individual inputs, we use a set of single shot - * functions which piece together a range of lengths and operate in constant time. - * - * Additionally, the number of multiplies has been significantly reduced. This - * reduces latency, especially when emulating 64-bit multiplies on 32-bit. - * - * Depending on the platform, this may or may not be faster than XXH32, but it - * is almost guaranteed to be faster than XXH64. - */ - -/* - * At very short lengths, there isn't enough input to fully hide secrets, or use - * the entire secret. - * - * There is also only a limited amount of mixing we can do before significantly - * impacting performance. - * - * Therefore, we use different sections of the secret and always mix two secret - * samples with an XOR. This should have no effect on performance on the - * seedless or withSeed variants because everything _should_ be constant folded - * by modern compilers. - * - * The XOR mixing hides individual parts of the secret and increases entropy. - * - * This adds an extra layer of strength for custom secrets. - */ -XXH_FORCE_INLINE XXH64_hash_t -XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(1 <= len && len <= 3); - XXH_ASSERT(secret != NULL); - /* - * len = 1: combined = { input[0], 0x01, input[0], input[0] } - * len = 2: combined = { input[1], 0x02, input[0], input[1] } - * len = 3: combined = { input[2], 0x03, input[0], input[1] } - */ - { xxh_u8 const c1 = input[0]; - xxh_u8 const c2 = input[len >> 1]; - xxh_u8 const c3 = input[len - 1]; - xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) - | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); - xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; - xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; - return XXH64_avalanche(keyed); - } -} - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(4 <= len && len < 8); - seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; - { xxh_u32 const input1 = XXH_readLE32(input); - xxh_u32 const input2 = XXH_readLE32(input + len - 4); - xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; - xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); - xxh_u64 const keyed = input64 ^ bitflip; - return XXH3_rrmxmx(keyed, len); - } -} - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(8 <= len && len <= 16); - { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; - xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; - xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; - xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; - xxh_u64 const acc = len - + XXH_swap64(input_lo) + input_hi - + XXH3_mul128_fold64(input_lo, input_hi); - return XXH3_avalanche(acc); - } -} - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(len <= 16); - { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); - if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); - if (len) return XXH3_len_1to3_64b(input, len, secret, seed); - return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); - } -} - -/* - * DISCLAIMER: There are known *seed-dependent* multicollisions here due to - * multiplication by zero, affecting hashes of lengths 17 to 240. - * - * However, they are very unlikely. - * - * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all - * unseeded non-cryptographic hashes, it does not attempt to defend itself - * against specially crafted inputs, only random inputs. - * - * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes - * cancelling out the secret is taken an arbitrary number of times (addressed - * in XXH3_accumulate_512), this collision is very unlikely with random inputs - * and/or proper seeding: - * - * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a - * function that is only called up to 16 times per hash with up to 240 bytes of - * input. - * - * This is not too bad for a non-cryptographic hash function, especially with - * only 64 bit outputs. - * - * The 128-bit variant (which trades some speed for strength) is NOT affected - * by this, although it is always a good idea to use a proper seed if you care - * about strength. - */ -XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, - const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) -{ -#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ - /* - * UGLY HACK: - * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in - * slower code. - * - * By forcing seed64 into a register, we disrupt the cost model and - * cause it to scalarize. See `XXH32_round()` - * - * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, - * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on - * GCC 9.2, despite both emitting scalar code. - * - * GCC generates much better scalar code than Clang for the rest of XXH3, - * which is why finding a more optimal codepath is an interest. - */ - __asm__ ("" : "+r" (seed64)); -#endif - { xxh_u64 const input_lo = XXH_readLE64(input); - xxh_u64 const input_hi = XXH_readLE64(input+8); - return XXH3_mul128_fold64( - input_lo ^ (XXH_readLE64(secret) + seed64), - input_hi ^ (XXH_readLE64(secret+8) - seed64) - ); - } -} - -/* For mid range keys, XXH3 uses a Mum-hash variant. */ -XXH_FORCE_INLINE XXH64_hash_t -XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(16 < len && len <= 128); - - { xxh_u64 acc = len * XXH_PRIME64_1; - if (len > 32) { - if (len > 64) { - if (len > 96) { - acc += XXH3_mix16B(input+48, secret+96, seed); - acc += XXH3_mix16B(input+len-64, secret+112, seed); - } - acc += XXH3_mix16B(input+32, secret+64, seed); - acc += XXH3_mix16B(input+len-48, secret+80, seed); - } - acc += XXH3_mix16B(input+16, secret+32, seed); - acc += XXH3_mix16B(input+len-32, secret+48, seed); - } - acc += XXH3_mix16B(input+0, secret+0, seed); - acc += XXH3_mix16B(input+len-16, secret+16, seed); - - return XXH3_avalanche(acc); - } -} - -#define XXH3_MIDSIZE_MAX 240 - -XXH_NO_INLINE XXH64_hash_t -XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); - - #define XXH3_MIDSIZE_STARTOFFSET 3 - #define XXH3_MIDSIZE_LASTOFFSET 17 - - { xxh_u64 acc = len * XXH_PRIME64_1; - int const nbRounds = (int)len / 16; - int i; - for (i=0; i<8; i++) { - acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); - } - acc = XXH3_avalanche(acc); - XXH_ASSERT(nbRounds >= 8); -#if defined(__clang__) /* Clang */ \ - && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ - /* - * UGLY HACK: - * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. - * In everywhere else, it uses scalar code. - * - * For 64->128-bit multiplies, even if the NEON was 100% optimal, it - * would still be slower than UMAAL (see XXH_mult64to128). - * - * Unfortunately, Clang doesn't handle the long multiplies properly and - * converts them to the nonexistent "vmulq_u64" intrinsic, which is then - * scalarized into an ugly mess of VMOV.32 instructions. - * - * This mess is difficult to avoid without turning autovectorization - * off completely, but they are usually relatively minor and/or not - * worth it to fix. - * - * This loop is the easiest to fix, as unlike XXH32, this pragma - * _actually works_ because it is a loop vectorization instead of an - * SLP vectorization. - */ - #pragma clang loop vectorize(disable) -#endif - for (i=8 ; i < nbRounds; i++) { - acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); - } - /* last bytes */ - acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); - return XXH3_avalanche(acc); - } -} - - -/* ======= Long Keys ======= */ - -#define XXH_STRIPE_LEN 64 -#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ -#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) - -#ifdef XXH_OLD_NAMES -# define STRIPE_LEN XXH_STRIPE_LEN -# define ACC_NB XXH_ACC_NB -#endif - -XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) -{ - if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); - memcpy(dst, &v64, sizeof(v64)); -} - -/* Several intrinsic functions below are supposed to accept __int64 as argument, - * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . - * However, several environments do not define __int64 type, - * requiring a workaround. - */ -#if !defined (__VMS) \ - && (defined (__cplusplus) \ - || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) - typedef int64_t xxh_i64; -#else - /* the following type must have a width of 64-bit */ - typedef long long xxh_i64; -#endif - -/* - * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. - * - * It is a hardened version of UMAC, based off of FARSH's implementation. - * - * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD - * implementations, and it is ridiculously fast. - * - * We harden it by mixing the original input to the accumulators as well as the product. - * - * This means that in the (relatively likely) case of a multiply by zero, the - * original input is preserved. - * - * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve - * cross-pollination, as otherwise the upper and lower halves would be - * essentially independent. - * - * This doesn't matter on 64-bit hashes since they all get merged together in - * the end, so we skip the extra step. - * - * Both XXH3_64bits and XXH3_128bits use this subroutine. - */ - -#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH) - -#ifndef XXH_TARGET_AVX512 -# define XXH_TARGET_AVX512 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc; - XXH_ASSERT((((size_t)acc) & 63) == 0); - XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); - - { - /* data_vec = input[0]; */ - __m512i const data_vec = _mm512_loadu_si512 (input); - /* key_vec = secret[0]; */ - __m512i const key_vec = _mm512_loadu_si512 (secret); - /* data_key = data_vec ^ key_vec; */ - __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); - /* xacc[0] += swap(data_vec); */ - __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); - __m512i const sum = _mm512_add_epi64(*xacc, data_swap); - /* xacc[0] += product; */ - *xacc = _mm512_add_epi64(product, sum); - } -} - -/* - * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. - * - * Multiplication isn't perfect, as explained by Google in HighwayHash: - * - * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to - * // varying degrees. In descending order of goodness, bytes - * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. - * // As expected, the upper and lower bytes are much worse. - * - * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 - * - * Since our algorithm uses a pseudorandom secret to add some variance into the - * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. - * - * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid - * extraction. - * - * Both XXH3_64bits and XXH3_128bits use this subroutine. - */ - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 63) == 0); - XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); - { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc; - const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); - - /* xacc[0] ^= (xacc[0] >> 47) */ - __m512i const acc_vec = *xacc; - __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); - __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); - /* xacc[0] ^= secret; */ - __m512i const key_vec = _mm512_loadu_si512 (secret); - __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); - - /* xacc[0] *= XXH_PRIME32_1; */ - __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); - __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); - __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); - *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); - } -} - -XXH_FORCE_INLINE XXH_TARGET_AVX512 void -XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); - XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); - XXH_ASSERT(((size_t)customSecret & 63) == 0); - (void)(&XXH_writeLE64); - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); - __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64); - - XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret; - XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret; - int i; - for (i=0; i < nbRounds; ++i) { - /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', - * this will warn "discards ‘const’ qualifier". */ - union { - XXH_ALIGN(64) const __m512i* cp; - XXH_ALIGN(64) void* p; - } remote_const_void; - remote_const_void.cp = src + i; - dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); - } } -} - -#endif - -#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH) - -#ifndef XXH_TARGET_AVX2 -# define XXH_TARGET_AVX2 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void -XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 31) == 0); - { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xinput = (const __m256i *) input; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xsecret = (const __m256i *) secret; - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { - /* data_vec = xinput[i]; */ - __m256i const data_vec = _mm256_loadu_si256 (xinput+i); - /* key_vec = xsecret[i]; */ - __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); - /* data_key = data_vec ^ key_vec; */ - __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); - /* xacc[i] += swap(data_vec); */ - __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); - __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); - /* xacc[i] += product; */ - xacc[i] = _mm256_add_epi64(product, sum); - } } -} - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void -XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 31) == 0); - { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ - const __m256i* const xsecret = (const __m256i *) secret; - const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { - /* xacc[i] ^= (xacc[i] >> 47) */ - __m256i const acc_vec = xacc[i]; - __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); - __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); - /* xacc[i] ^= xsecret; */ - __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); - __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); - - /* xacc[i] *= XXH_PRIME32_1; */ - __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); - __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); - xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); - } - } -} - -XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); - XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); - (void)(&XXH_writeLE64); - XXH_PREFETCH(customSecret); - { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64); - - XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret; - XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret; - -# if defined(__GNUC__) || defined(__clang__) - /* - * On GCC & Clang, marking 'dest' as modified will cause the compiler: - * - do not extract the secret from sse registers in the internal loop - * - use less common registers, and avoid pushing these reg into stack - * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with - * customSecret, and on aarch64, this prevented LDP from merging two - * loads together for free. Putting the loads together before the stores - * properly generates LDP. - */ - __asm__("" : "+r" (dest)); -# endif - - /* GCC -O2 need unroll loop manually */ - dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); - dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); - dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); - dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); - dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); - dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); - } -} - -#endif - -#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) - -#ifndef XXH_TARGET_SSE2 -# define XXH_TARGET_SSE2 /* disable attribute target */ -#endif - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void -XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - /* SSE2 is just a half-scale version of the AVX2 version. */ - XXH_ASSERT((((size_t)acc) & 15) == 0); - { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xinput = (const __m128i *) input; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xsecret = (const __m128i *) secret; - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { - /* data_vec = xinput[i]; */ - __m128i const data_vec = _mm_loadu_si128 (xinput+i); - /* key_vec = xsecret[i]; */ - __m128i const key_vec = _mm_loadu_si128 (xsecret+i); - /* data_key = data_vec ^ key_vec; */ - __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); - /* data_key_lo = data_key >> 32; */ - __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ - __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); - /* xacc[i] += swap(data_vec); */ - __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); - __m128i const sum = _mm_add_epi64(xacc[i], data_swap); - /* xacc[i] += product; */ - xacc[i] = _mm_add_epi64(product, sum); - } } -} - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void -XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; - /* Unaligned. This is mainly for pointer arithmetic, and because - * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ - const __m128i* const xsecret = (const __m128i *) secret; - const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { - /* xacc[i] ^= (xacc[i] >> 47) */ - __m128i const acc_vec = xacc[i]; - __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); - __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); - /* xacc[i] ^= xsecret[i]; */ - __m128i const key_vec = _mm_loadu_si128 (xsecret+i); - __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); - - /* xacc[i] *= XXH_PRIME32_1; */ - __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); - __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); - __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); - xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); - } - } -} - -XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); - (void)(&XXH_writeLE64); - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); - -# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 - // MSVC 32bit mode does not support _mm_set_epi64x before 2015 - XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 }; - __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); -# else - __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64); -# endif - int i; - - XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret; - XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret; -# if defined(__GNUC__) || defined(__clang__) - /* - * On GCC & Clang, marking 'dest' as modified will cause the compiler: - * - do not extract the secret from sse registers in the internal loop - * - use less common registers, and avoid pushing these reg into stack - */ - __asm__("" : "+r" (dest)); -# endif - - for (i=0; i < nbRounds; ++i) { - dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed); - } } -} - -#endif - -#if (XXH_VECTOR == XXH_NEON) - -XXH_FORCE_INLINE void -XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - { - XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; - /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ - uint8_t const* const xinput = (const uint8_t *) input; - uint8_t const* const xsecret = (const uint8_t *) secret; - - size_t i; - for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { - /* data_vec = xinput[i]; */ - uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); - /* key_vec = xsecret[i]; */ - uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); - uint64x2_t data_key; - uint32x2_t data_key_lo, data_key_hi; - /* xacc[i] += swap(data_vec); */ - uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); - uint64x2_t const swapped = vextq_u64(data64, data64, 1); - xacc[i] = vaddq_u64 (xacc[i], swapped); - /* data_key = data_vec ^ key_vec; */ - data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); - /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); - * data_key_hi = (uint32x2_t) (data_key >> 32); - * data_key = UNDEFINED; */ - XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); - /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ - xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); - - } - } -} - -XXH_FORCE_INLINE void -XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - - { uint64x2_t* xacc = (uint64x2_t*) acc; - uint8_t const* xsecret = (uint8_t const*) secret; - uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); - - size_t i; - for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { - /* xacc[i] ^= (xacc[i] >> 47); */ - uint64x2_t acc_vec = xacc[i]; - uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); - uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); - - /* xacc[i] ^= xsecret[i]; */ - uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); - uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); - - /* xacc[i] *= XXH_PRIME32_1 */ - uint32x2_t data_key_lo, data_key_hi; - /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); - * data_key_hi = (uint32x2_t) (xacc[i] >> 32); - * xacc[i] = UNDEFINED; */ - XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); - { /* - * prod_hi = (data_key >> 32) * XXH_PRIME32_1; - * - * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will - * incorrectly "optimize" this: - * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); - * shifted = vshll_n_u32(tmp, 32); - * to this: - * tmp = "vmulq_u64"(a, b); // no such thing! - * shifted = vshlq_n_u64(tmp, 32); - * - * However, unlike SSE, Clang lacks a 64-bit multiply routine - * for NEON, and it scalarizes two 64-bit multiplies instead. - * - * vmull_u32 has the same timing as vmul_u32, and it avoids - * this bug completely. - * See https://bugs.llvm.org/show_bug.cgi?id=39967 - */ - uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); - /* xacc[i] = prod_hi << 32; */ - xacc[i] = vshlq_n_u64(prod_hi, 32); - /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ - xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); - } - } } -} - -#endif - -#if (XXH_VECTOR == XXH_VSX) - -XXH_FORCE_INLINE void -XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */ - xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ - xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ - xxh_u64x2 const v32 = { 32, 32 }; - size_t i; - for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { - /* data_vec = xinput[i]; */ - xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); - /* key_vec = xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); - xxh_u64x2 const data_key = data_vec ^ key_vec; - /* shuffled = (data_key << 32) | (data_key >> 32); */ - xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); - /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ - xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); - xacc[i] += product; - - /* swap high and low halves */ -#ifdef __s390x__ - xacc[i] += vec_permi(data_vec, data_vec, 2); -#else - xacc[i] += vec_xxpermdi(data_vec, data_vec, 2); -#endif - } -} - -XXH_FORCE_INLINE void -XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ASSERT((((size_t)acc) & 15) == 0); - - { xxh_u64x2* const xacc = (xxh_u64x2*) acc; - const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; - /* constants */ - xxh_u64x2 const v32 = { 32, 32 }; - xxh_u64x2 const v47 = { 47, 47 }; - xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; - size_t i; - for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { - /* xacc[i] ^= (xacc[i] >> 47); */ - xxh_u64x2 const acc_vec = xacc[i]; - xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); - - /* xacc[i] ^= xsecret[i]; */ - xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); - xxh_u64x2 const data_key = data_vec ^ key_vec; - - /* xacc[i] *= XXH_PRIME32_1 */ - /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ - xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); - /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ - xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); - xacc[i] = prod_odd + (prod_even << v32); - } } -} - -#endif - -/* scalar variants - universal */ - -XXH_FORCE_INLINE void -XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, - const void* XXH_RESTRICT input, - const void* XXH_RESTRICT secret) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ - const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ - const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ - size_t i; - XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); - for (i=0; i < XXH_ACC_NB; i++) { - xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); - xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); - xacc[i ^ 1] += data_val; /* swap adjacent lanes */ - xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); - } -} - -XXH_FORCE_INLINE void -XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ - const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ - size_t i; - XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); - for (i=0; i < XXH_ACC_NB; i++) { - xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); - xxh_u64 acc64 = xacc[i]; - acc64 = XXH_xorshift64(acc64, 47); - acc64 ^= key64; - acc64 *= XXH_PRIME32_1; - xacc[i] = acc64; - } -} - -XXH_FORCE_INLINE void -XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) -{ - /* - * We need a separate pointer for the hack below, - * which requires a non-const pointer. - * Any decent compiler will optimize this out otherwise. - */ - const xxh_u8* kSecretPtr = XXH3_kSecret; - XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); - -#if defined(__clang__) && defined(__aarch64__) - /* - * UGLY HACK: - * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are - * placed sequentially, in order, at the top of the unrolled loop. - * - * While MOVK is great for generating constants (2 cycles for a 64-bit - * constant compared to 4 cycles for LDR), long MOVK chains stall the - * integer pipelines: - * I L S - * MOVK - * MOVK - * MOVK - * MOVK - * ADD - * SUB STR - * STR - * By forcing loads from memory (as the asm line causes Clang to assume - * that XXH3_kSecretPtr has been changed), the pipelines are used more - * efficiently: - * I L S - * LDR - * ADD LDR - * SUB STR - * STR - * XXH3_64bits_withSeed, len == 256, Snapdragon 835 - * without hack: 2654.4 MB/s - * with hack: 3202.9 MB/s - */ - __asm__("" : "+r" (kSecretPtr)); -#endif - /* - * Note: in debug mode, this overrides the asm optimization - * and Clang will emit MOVK chains again. - */ - XXH_ASSERT(kSecretPtr == XXH3_kSecret); - - { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; - int i; - for (i=0; i < nbRounds; i++) { - /* - * The asm hack causes Clang to assume that kSecretPtr aliases with - * customSecret, and on aarch64, this prevented LDP from merging two - * loads together for free. Putting the loads together before the stores - * properly generates LDP. - */ - xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; - xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; - XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); - XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); - } } -} - - -typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); -typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); -typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); - - -#if (XXH_VECTOR == XXH_AVX512) - -#define XXH3_accumulate_512 XXH3_accumulate_512_avx512 -#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 -#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 - -#elif (XXH_VECTOR == XXH_AVX2) - -#define XXH3_accumulate_512 XXH3_accumulate_512_avx2 -#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 -#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 - -#elif (XXH_VECTOR == XXH_SSE2) - -#define XXH3_accumulate_512 XXH3_accumulate_512_sse2 -#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 -#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 - -#elif (XXH_VECTOR == XXH_NEON) - -#define XXH3_accumulate_512 XXH3_accumulate_512_neon -#define XXH3_scrambleAcc XXH3_scrambleAcc_neon -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#elif (XXH_VECTOR == XXH_VSX) - -#define XXH3_accumulate_512 XXH3_accumulate_512_vsx -#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#else /* scalar */ - -#define XXH3_accumulate_512 XXH3_accumulate_512_scalar -#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar -#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar - -#endif - - - -#ifndef XXH_PREFETCH_DIST -# ifdef __clang__ -# define XXH_PREFETCH_DIST 320 -# else -# if (XXH_VECTOR == XXH_AVX512) -# define XXH_PREFETCH_DIST 512 -# else -# define XXH_PREFETCH_DIST 384 -# endif -# endif /* __clang__ */ -#endif /* XXH_PREFETCH_DIST */ - -/* - * XXH3_accumulate() - * Loops over XXH3_accumulate_512(). - * Assumption: nbStripes will not overflow the secret size - */ -XXH_FORCE_INLINE void -XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, - const xxh_u8* XXH_RESTRICT input, - const xxh_u8* XXH_RESTRICT secret, - size_t nbStripes, - XXH3_f_accumulate_512 f_acc512) -{ - size_t n; - for (n = 0; n < nbStripes; n++ ) { - const xxh_u8* const in = input + n*XXH_STRIPE_LEN; - XXH_PREFETCH(in + XXH_PREFETCH_DIST); - f_acc512(acc, - in, - secret + n*XXH_SECRET_CONSUME_RATE); - } -} - -XXH_FORCE_INLINE void -XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, - const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble) -{ - size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; - size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; - size_t const nb_blocks = (len - 1) / block_len; - - size_t n; - - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); - - for (n = 0; n < nb_blocks; n++) { - XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); - f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); - } - - /* last partial block */ - XXH_ASSERT(len > XXH_STRIPE_LEN); - { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; - XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); - XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); - - /* last stripe */ - { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; -#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ - f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); - } } -} - -XXH_FORCE_INLINE xxh_u64 -XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) -{ - return XXH3_mul128_fold64( - acc[0] ^ XXH_readLE64(secret), - acc[1] ^ XXH_readLE64(secret+8) ); -} - -static XXH64_hash_t -XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) -{ - xxh_u64 result64 = start; - size_t i = 0; - - for (i = 0; i < 4; i++) { - result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); -#if defined(__clang__) /* Clang */ \ - && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ - && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ - && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ - /* - * UGLY HACK: - * Prevent autovectorization on Clang ARMv7-a. Exact same problem as - * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. - * XXH3_64bits, len == 256, Snapdragon 835: - * without hack: 2063.7 MB/s - * with hack: 2560.7 MB/s - */ - __asm__("" : "+r" (result64)); -#endif - } - - return XXH3_avalanche(result64); -} - -#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ - XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, - const void* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); - - /* converge into final hash */ - XXH_STATIC_ASSERT(sizeof(acc) == 64); - /* do not align on 8, so that the secret is different from the accumulator */ -#define XXH_SECRET_MERGEACCS_START 11 - XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; - return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - * Since the function is not inlined, the compiler may not be able to understand that, - * in some scenarios, its `secret` argument is actually a compile time constant. - * This variant enforces that the compiler can detect that, - * and uses this opportunity to streamline the generated code for better performance. - */ -XXH_NO_INLINE XXH64_hash_t -XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; (void)secret; (void)secretLen; - return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); -} - -/* - * XXH3_hashLong_64b_withSeed(): - * Generate a custom key based on alteration of default XXH3_kSecret with the seed, - * and then use this key for long mode hashing. - * - * This operation is decently fast but nonetheless costs a little bit of time. - * Try to avoid it whenever possible (typically when seed==0). - * - * It's important for performance that XXH3_hashLong is not inlined. Not sure - * why (uop cache maybe?), but the difference is large and easily measurable. - */ -XXH_FORCE_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, - XXH64_hash_t seed, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble, - XXH3_f_initCustomSecret f_initSec) -{ - if (seed == 0) - return XXH3_hashLong_64b_internal(input, len, - XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc512, f_scramble); - { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; - f_initSec(secret, seed); - return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), - f_acc512, f_scramble); - } -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH64_hash_t -XXH3_hashLong_64b_withSeed(const void* input, size_t len, - XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) -{ - (void)secret; (void)secretLen; - return XXH3_hashLong_64b_withSeed_internal(input, len, seed, - XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); -} - - -typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, - XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); - -XXH_FORCE_INLINE XXH64_hash_t -XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, - XXH3_hashLong64_f f_hashLong) -{ - XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); - /* - * If an action is to be taken if `secretLen` condition is not respected, - * it should be done here. - * For now, it's a contract pre-condition. - * Adding a check and a branch here would cost performance at every hash. - * Also, note that function signature doesn't offer room to return an error. - */ - if (len <= 16) - return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); - if (len <= 128) - return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - if (len <= XXH3_MIDSIZE_MAX) - return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); -} - - -/* === Public entry point === */ - -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) -{ - return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); -} - -XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) -{ - return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); -} - -XXH_PUBLIC_API XXH64_hash_t -XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) -{ - return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); -} - - -/* === XXH3 streaming === */ - -/* - * Malloc's a pointer that is always aligned to align. - * - * This must be freed with `XXH_alignedFree()`. - * - * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte - * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 - * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. - * - * This underalignment previously caused a rather obvious crash which went - * completely unnoticed due to XXH3_createState() not actually being tested. - * Credit to RedSpah for noticing this bug. - * - * The alignment is done manually: Functions like posix_memalign or _mm_malloc - * are avoided: To maintain portability, we would have to write a fallback - * like this anyways, and besides, testing for the existence of library - * functions without relying on external build tools is impossible. - * - * The method is simple: Overallocate, manually align, and store the offset - * to the original behind the returned pointer. - * - * Align must be a power of 2 and 8 <= align <= 128. - */ -static void* XXH_alignedMalloc(size_t s, size_t align) -{ - XXH_ASSERT(align <= 128 && align >= 8); /* range check */ - XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ - XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ - { /* Overallocate to make room for manual realignment and an offset byte */ - xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); - if (base != NULL) { - /* - * Get the offset needed to align this pointer. - * - * Even if the returned pointer is aligned, there will always be - * at least one byte to store the offset to the original pointer. - */ - size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ - /* Add the offset for the now-aligned pointer */ - xxh_u8* ptr = base + offset; - - XXH_ASSERT((size_t)ptr % align == 0); - - /* Store the offset immediately before the returned pointer. */ - ptr[-1] = (xxh_u8)offset; - return ptr; - } - return NULL; - } -} -/* - * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass - * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. - */ -static void XXH_alignedFree(void* p) -{ - if (p != NULL) { - xxh_u8* ptr = (xxh_u8*)p; - /* Get the offset byte we added in XXH_malloc. */ - xxh_u8 offset = ptr[-1]; - /* Free the original malloc'd pointer */ - xxh_u8* base = ptr - offset; - XXH_free(base); - } -} -XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) -{ - XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); - if (state==NULL) return NULL; - XXH3_INITSTATE(state); - return state; -} - -XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) -{ - XXH_alignedFree(statePtr); - return XXH_OK; -} - -XXH_PUBLIC_API void -XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) -{ - memcpy(dst_state, src_state, sizeof(*dst_state)); -} - -static void -XXH3_64bits_reset_internal(XXH3_state_t* statePtr, - XXH64_hash_t seed, - const void* secret, size_t secretSize) -{ - size_t const initStart = offsetof(XXH3_state_t, bufferedSize); - size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; - XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); - XXH_ASSERT(statePtr != NULL); - /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ - memset((char*)statePtr + initStart, 0, initLength); - statePtr->acc[0] = XXH_PRIME32_3; - statePtr->acc[1] = XXH_PRIME64_1; - statePtr->acc[2] = XXH_PRIME64_2; - statePtr->acc[3] = XXH_PRIME64_3; - statePtr->acc[4] = XXH_PRIME64_4; - statePtr->acc[5] = XXH_PRIME32_2; - statePtr->acc[6] = XXH_PRIME64_5; - statePtr->acc[7] = XXH_PRIME32_1; - statePtr->seed = seed; - statePtr->extSecret = (const unsigned char*)secret; - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); - statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; - statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset(XXH3_state_t* statePtr) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize); - if (secret == NULL) return XXH_ERROR; - if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) -{ - if (statePtr == NULL) return XXH_ERROR; - if (seed==0) return XXH3_64bits_reset(statePtr); - if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); - XXH3_64bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -/* Note : when XXH3_consumeStripes() is invoked, - * there must be a guarantee that at least one more byte must be consumed from input - * so that the function can blindly consume all stripes using the "normal" secret segment */ -XXH_FORCE_INLINE void -XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, - size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, - const xxh_u8* XXH_RESTRICT input, size_t nbStripes, - const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble) -{ - XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ - XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); - if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { - /* need a scrambling operation */ - size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; - size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; - XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); - f_scramble(acc, secret + secretLimit); - XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); - *nbStripesSoFarPtr = nbStripesAfterBlock; - } else { - XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); - *nbStripesSoFarPtr += nbStripes; - } -} - -/* - * Both XXH3_64bits_update and XXH3_128bits_update use this routine. - */ -XXH_FORCE_INLINE XXH_errorcode -XXH3_update(XXH3_state_t* state, - const xxh_u8* input, size_t len, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble) -{ - if (input==NULL) -#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) - return XXH_OK; -#else - return XXH_ERROR; -#endif - - { const xxh_u8* const bEnd = input + len; - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; - - state->totalLen += len; - - if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */ - XXH_memcpy(state->buffer + state->bufferedSize, input, len); - state->bufferedSize += (XXH32_hash_t)len; - return XXH_OK; - } - /* total input is now > XXH3_INTERNALBUFFER_SIZE */ - - #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) - XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ - - /* - * Internal buffer is partially filled (always, except at beginning) - * Complete it, then consume it. - */ - if (state->bufferedSize) { - size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; - XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); - input += loadSize; - XXH3_consumeStripes(state->acc, - &state->nbStripesSoFar, state->nbStripesPerBlock, - state->buffer, XXH3_INTERNALBUFFER_STRIPES, - secret, state->secretLimit, - f_acc512, f_scramble); - state->bufferedSize = 0; - } - XXH_ASSERT(input < bEnd); - - /* Consume input by a multiple of internal buffer size */ - if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) { - const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; - do { - XXH3_consumeStripes(state->acc, - &state->nbStripesSoFar, state->nbStripesPerBlock, - input, XXH3_INTERNALBUFFER_STRIPES, - secret, state->secretLimit, - f_acc512, f_scramble); - input += XXH3_INTERNALBUFFER_SIZE; - } while (input<limit); - /* for last partial stripe */ - memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); - } - XXH_ASSERT(input < bEnd); - - /* Some remaining input (always) : buffer it */ - XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); - state->bufferedSize = (XXH32_hash_t)(bEnd-input); - } - - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) -{ - return XXH3_update(state, (const xxh_u8*)input, len, - XXH3_accumulate_512, XXH3_scrambleAcc); -} - - -XXH_FORCE_INLINE void -XXH3_digest_long (XXH64_hash_t* acc, - const XXH3_state_t* state, - const unsigned char* secret) -{ - /* - * Digest on a local copy. This way, the state remains unaltered, and it can - * continue ingesting more input afterwards. - */ - memcpy(acc, state->acc, sizeof(state->acc)); - if (state->bufferedSize >= XXH_STRIPE_LEN) { - size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; - size_t nbStripesSoFar = state->nbStripesSoFar; - XXH3_consumeStripes(acc, - &nbStripesSoFar, state->nbStripesPerBlock, - state->buffer, nbStripes, - secret, state->secretLimit, - XXH3_accumulate_512, XXH3_scrambleAcc); - /* last stripe */ - XXH3_accumulate_512(acc, - state->buffer + state->bufferedSize - XXH_STRIPE_LEN, - secret + state->secretLimit - XXH_SECRET_LASTACC_START); - } else { /* bufferedSize < XXH_STRIPE_LEN */ - xxh_u8 lastStripe[XXH_STRIPE_LEN]; - size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; - XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ - memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); - memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); - XXH3_accumulate_512(acc, - lastStripe, - secret + state->secretLimit - XXH_SECRET_LASTACC_START); - } -} - -XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) -{ - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; - if (state->totalLen > XXH3_MIDSIZE_MAX) { - XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; - XXH3_digest_long(acc, state, secret); - return XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)state->totalLen * XXH_PRIME64_1); - } - /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ - if (state->seed) - return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); - return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), - secret, state->secretLimit + XXH_STRIPE_LEN); -} - - -#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) - -XXH_PUBLIC_API void -XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize) -{ - XXH_ASSERT(secretBuffer != NULL); - if (customSeedSize == 0) { - memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); - return; - } - XXH_ASSERT(customSeed != NULL); - - { size_t const segmentSize = sizeof(XXH128_hash_t); - size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize; - XXH128_canonical_t scrambler; - XXH64_hash_t seeds[12]; - size_t segnb; - XXH_ASSERT(nbSegments == 12); - XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */ - XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); - - /* - * Copy customSeed to seeds[], truncating or repeating as necessary. - */ - { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds)); - size_t filled = toFill; - memcpy(seeds, customSeed, toFill); - while (filled < sizeof(seeds)) { - toFill = XXH_MIN(filled, sizeof(seeds) - filled); - memcpy((char*)seeds + filled, seeds, toFill); - filled += toFill; - } } - - /* generate secret */ - memcpy(secretBuffer, &scrambler, sizeof(scrambler)); - for (segnb=1; segnb < nbSegments; segnb++) { - size_t const segmentStart = segnb * segmentSize; - XXH128_canonical_t segment; - XXH128_canonicalFromHash(&segment, - XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) ); - memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment)); - } } -} - - -/* ========================================== - * XXH3 128 bits (a.k.a XXH128) - * ========================================== - * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, - * even without counting the significantly larger output size. - * - * For example, extra steps are taken to avoid the seed-dependent collisions - * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). - * - * This strength naturally comes at the cost of some speed, especially on short - * lengths. Note that longer hashes are about as fast as the 64-bit version - * due to it using only a slight modification of the 64-bit loop. - * - * XXH128 is also more oriented towards 64-bit machines. It is still extremely - * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). - */ - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - /* A doubled version of 1to3_64b with different constants. */ - XXH_ASSERT(input != NULL); - XXH_ASSERT(1 <= len && len <= 3); - XXH_ASSERT(secret != NULL); - /* - * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } - * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } - * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } - */ - { xxh_u8 const c1 = input[0]; - xxh_u8 const c2 = input[len >> 1]; - xxh_u8 const c3 = input[len - 1]; - xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) - | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); - xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); - xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; - xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; - xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; - xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; - XXH128_hash_t h128; - h128.low64 = XXH64_avalanche(keyed_lo); - h128.high64 = XXH64_avalanche(keyed_hi); - return h128; - } -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(4 <= len && len <= 8); - seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; - { xxh_u32 const input_lo = XXH_readLE32(input); - xxh_u32 const input_hi = XXH_readLE32(input + len - 4); - xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); - xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; - xxh_u64 const keyed = input_64 ^ bitflip; - - /* Shift len to the left to ensure it is even, this avoids even multiplies. */ - XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); - - m128.high64 += (m128.low64 << 1); - m128.low64 ^= (m128.high64 >> 3); - - m128.low64 = XXH_xorshift64(m128.low64, 35); - m128.low64 *= 0x9FB21C651E98DF25ULL; - m128.low64 = XXH_xorshift64(m128.low64, 28); - m128.high64 = XXH3_avalanche(m128.high64); - return m128; - } -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(input != NULL); - XXH_ASSERT(secret != NULL); - XXH_ASSERT(9 <= len && len <= 16); - { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; - xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; - xxh_u64 const input_lo = XXH_readLE64(input); - xxh_u64 input_hi = XXH_readLE64(input + len - 8); - XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); - /* - * Put len in the middle of m128 to ensure that the length gets mixed to - * both the low and high bits in the 128x64 multiply below. - */ - m128.low64 += (xxh_u64)(len - 1) << 54; - input_hi ^= bitfliph; - /* - * Add the high 32 bits of input_hi to the high 32 bits of m128, then - * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to - * the high 64 bits of m128. - * - * The best approach to this operation is different on 32-bit and 64-bit. - */ - if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ - /* - * 32-bit optimized version, which is more readable. - * - * On 32-bit, it removes an ADC and delays a dependency between the two - * halves of m128.high64, but it generates an extra mask on 64-bit. - */ - m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); - } else { - /* - * 64-bit optimized (albeit more confusing) version. - * - * Uses some properties of addition and multiplication to remove the mask: - * - * Let: - * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) - * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) - * c = XXH_PRIME32_2 - * - * a + (b * c) - * Inverse Property: x + y - x == y - * a + (b * (1 + c - 1)) - * Distributive Property: x * (y + z) == (x * y) + (x * z) - * a + (b * 1) + (b * (c - 1)) - * Identity Property: x * 1 == x - * a + b + (b * (c - 1)) - * - * Substitute a, b, and c: - * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) - * - * Since input_hi.hi + input_hi.lo == input_hi, we get this: - * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) - */ - m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); - } - /* m128 ^= XXH_swap64(m128 >> 64); */ - m128.low64 ^= XXH_swap64(m128.high64); - - { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ - XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); - h128.high64 += m128.high64 * XXH_PRIME64_2; - - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = XXH3_avalanche(h128.high64); - return h128; - } } -} - -/* - * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN - */ -XXH_FORCE_INLINE XXH128_hash_t -XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) -{ - XXH_ASSERT(len <= 16); - { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); - if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); - if (len) return XXH3_len_1to3_128b(input, len, secret, seed); - { XXH128_hash_t h128; - xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); - xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); - h128.low64 = XXH64_avalanche(seed ^ bitflipl); - h128.high64 = XXH64_avalanche( seed ^ bitfliph); - return h128; - } } -} - -/* - * A bit slower than XXH3_mix16B, but handles multiply by zero better. - */ -XXH_FORCE_INLINE XXH128_hash_t -XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, - const xxh_u8* secret, XXH64_hash_t seed) -{ - acc.low64 += XXH3_mix16B (input_1, secret+0, seed); - acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); - acc.high64 += XXH3_mix16B (input_2, secret+16, seed); - acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); - return acc; -} - - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(16 < len && len <= 128); - - { XXH128_hash_t acc; - acc.low64 = len * XXH_PRIME64_1; - acc.high64 = 0; - if (len > 32) { - if (len > 64) { - if (len > 96) { - acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); - } - acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); - } - acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); - } - acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); - { XXH128_hash_t h128; - h128.low64 = acc.low64 + acc.high64; - h128.high64 = (acc.low64 * XXH_PRIME64_1) - + (acc.high64 * XXH_PRIME64_4) - + ((len - seed) * XXH_PRIME64_2); - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); - return h128; - } - } -} - -XXH_NO_INLINE XXH128_hash_t -XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH64_hash_t seed) -{ - XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; - XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); - - { XXH128_hash_t acc; - int const nbRounds = (int)len / 32; - int i; - acc.low64 = len * XXH_PRIME64_1; - acc.high64 = 0; - for (i=0; i<4; i++) { - acc = XXH128_mix32B(acc, - input + (32 * i), - input + (32 * i) + 16, - secret + (32 * i), - seed); - } - acc.low64 = XXH3_avalanche(acc.low64); - acc.high64 = XXH3_avalanche(acc.high64); - XXH_ASSERT(nbRounds >= 4); - for (i=4 ; i < nbRounds; i++) { - acc = XXH128_mix32B(acc, - input + (32 * i), - input + (32 * i) + 16, - secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), - seed); - } - /* last bytes */ - acc = XXH128_mix32B(acc, - input + len - 16, - input + len - 32, - secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, - 0ULL - seed); - - { XXH128_hash_t h128; - h128.low64 = acc.low64 + acc.high64; - h128.high64 = (acc.low64 * XXH_PRIME64_1) - + (acc.high64 * XXH_PRIME64_4) - + ((len - seed) * XXH_PRIME64_2); - h128.low64 = XXH3_avalanche(h128.low64); - h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); - return h128; - } - } -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, - const xxh_u8* XXH_RESTRICT secret, size_t secretSize, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble) -{ - XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; - - XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); - - /* converge into final hash */ - XXH_STATIC_ASSERT(sizeof(acc) == 64); - XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - { XXH128_hash_t h128; - h128.low64 = XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)len * XXH_PRIME64_1); - h128.high64 = XXH3_mergeAccs(acc, - secret + secretSize - - sizeof(acc) - XXH_SECRET_MERGEACCS_START, - ~((xxh_u64)len * XXH_PRIME64_2)); - return h128; - } -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH128_hash_t -XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; (void)secret; (void)secretLen; - return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_accumulate_512, XXH3_scrambleAcc); -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)seed64; - return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, - XXH3_accumulate_512, XXH3_scrambleAcc); -} - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, - XXH64_hash_t seed64, - XXH3_f_accumulate_512 f_acc512, - XXH3_f_scrambleAcc f_scramble, - XXH3_f_initCustomSecret f_initSec) -{ - if (seed64 == 0) - return XXH3_hashLong_128b_internal(input, len, - XXH3_kSecret, sizeof(XXH3_kSecret), - f_acc512, f_scramble); - { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; - f_initSec(secret, seed64); - return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), - f_acc512, f_scramble); - } -} - -/* - * It's important for performance that XXH3_hashLong is not inlined. - */ -XXH_NO_INLINE XXH128_hash_t -XXH3_hashLong_128b_withSeed(const void* input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) -{ - (void)secret; (void)secretLen; - return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, - XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); -} - -typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, - XXH64_hash_t, const void* XXH_RESTRICT, size_t); - -XXH_FORCE_INLINE XXH128_hash_t -XXH3_128bits_internal(const void* input, size_t len, - XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, - XXH3_hashLong128_f f_hl128) -{ - XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); - /* - * If an action is to be taken if `secret` conditions are not respected, - * it should be done here. - * For now, it's a contract pre-condition. - * Adding a check and a branch here would cost performance at every hash. - */ - if (len <= 16) - return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); - if (len <= 128) - return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - if (len <= XXH3_MIDSIZE_MAX) - return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); - return f_hl128(input, len, seed64, secret, secretLen); -} - - -/* === Public XXH128 API === */ - -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) -{ - return XXH3_128bits_internal(input, len, 0, - XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_hashLong_128b_default); -} - -XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) -{ - return XXH3_128bits_internal(input, len, 0, - (const xxh_u8*)secret, secretSize, - XXH3_hashLong_128b_withSecret); -} - -XXH_PUBLIC_API XXH128_hash_t -XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) -{ - return XXH3_128bits_internal(input, len, seed, - XXH3_kSecret, sizeof(XXH3_kSecret), - XXH3_hashLong_128b_withSeed); -} - -XXH_PUBLIC_API XXH128_hash_t -XXH128(const void* input, size_t len, XXH64_hash_t seed) -{ - return XXH3_128bits_withSeed(input, len, seed); -} - - -/* === XXH3 128-bit streaming === */ - -/* - * All the functions are actually the same as for 64-bit streaming variant. - * The only difference is the finalizatiom routine. - */ - -static void -XXH3_128bits_reset_internal(XXH3_state_t* statePtr, - XXH64_hash_t seed, - const void* secret, size_t secretSize) -{ - XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset(XXH3_state_t* statePtr) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) -{ - if (statePtr == NULL) return XXH_ERROR; - XXH3_128bits_reset_internal(statePtr, 0, secret, secretSize); - if (secret == NULL) return XXH_ERROR; - if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) -{ - if (statePtr == NULL) return XXH_ERROR; - if (seed==0) return XXH3_128bits_reset(statePtr); - if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed); - XXH3_128bits_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); - return XXH_OK; -} - -XXH_PUBLIC_API XXH_errorcode -XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) -{ - return XXH3_update(state, (const xxh_u8*)input, len, - XXH3_accumulate_512, XXH3_scrambleAcc); -} - -XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) -{ - const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; - if (state->totalLen > XXH3_MIDSIZE_MAX) { - XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; - XXH3_digest_long(acc, state, secret); - XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); - { XXH128_hash_t h128; - h128.low64 = XXH3_mergeAccs(acc, - secret + XXH_SECRET_MERGEACCS_START, - (xxh_u64)state->totalLen * XXH_PRIME64_1); - h128.high64 = XXH3_mergeAccs(acc, - secret + state->secretLimit + XXH_STRIPE_LEN - - sizeof(acc) - XXH_SECRET_MERGEACCS_START, - ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); - return h128; - } - } - /* len <= XXH3_MIDSIZE_MAX : short code */ - if (state->seed) - return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); - return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), - secret, state->secretLimit + XXH_STRIPE_LEN); -} - -/* 128-bit utility functions */ - -#include <string.h> /* memcmp, memcpy */ - -/* return : 1 is equal, 0 if different */ -XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) -{ - /* note : XXH128_hash_t is compact, it has no padding byte */ - return !(memcmp(&h1, &h2, sizeof(h1))); -} - -/* This prototype is compatible with stdlib's qsort(). - * return : >0 if *h128_1 > *h128_2 - * <0 if *h128_1 < *h128_2 - * =0 if *h128_1 == *h128_2 */ -XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) -{ - XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; - XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; - int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); - /* note : bets that, in most cases, hash values are different */ - if (hcmp) return hcmp; - return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); -} - - -/*====== Canonical representation ======*/ -XXH_PUBLIC_API void -XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) -{ - XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); - if (XXH_CPU_LITTLE_ENDIAN) { - hash.high64 = XXH_swap64(hash.high64); - hash.low64 = XXH_swap64(hash.low64); - } - memcpy(dst, &hash.high64, sizeof(hash.high64)); - memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); -} - -XXH_PUBLIC_API XXH128_hash_t -XXH128_hashFromCanonical(const XXH128_canonical_t* src) -{ - XXH128_hash_t h; - h.high64 = XXH_readBE64(src); - h.low64 = XXH_readBE64(src->digest + 8); - return h; -} - -/* Pop our optimization override from above */ -#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ - && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ - && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ -# pragma GCC pop_options -#endif - -#endif /* XXH_NO_LONG_LONG */ - - -#endif /* XXH_IMPLEMENTATION */ - - -#if defined (__cplusplus) -} -#endif -- 2.29.2
Locations
Projects
Search
Status Monitor
Help
Open Build Service
OBS Manuals
API Documentation
OBS Portal
Reporting a Bug
Contact
Mailing List
Forums
Chat (IRC)
Twitter
Open Build Service (OBS)
is an
openSUSE project
.
浙ICP备2022010568号-2